

Tap, Move, Shake
Turning Your game ideas inTo iPhone & iPad aPPs

Todd moore

i

Tap, Move, Shake: Turning Your Game Ideas into iPhone & iPad Apps
by Todd Moore

Copyright © 2012 Todd Moore. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastapol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Shawn Wallace and Brian Jepson Cover Design: Monica Kamsvaag
Production Editor: Jasmine Perez Compositor: Rebecca Demarest
Proofreader: Kiel Van Horn Indexer: Lucie Haskins

Printing History:
December 2011: First Edition.

Revision History:
 2011-12-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449303457 for release details.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book presents general information about technology and services that are constantly
changing, and therefore it may contain errors and/or information that, while accurate when it
was written, is no longer accurate by the time you read it. Some of the activities discussed in
this book, such as advertising, fund raising, and corporate communications, may be subject to
legal restrictions. Your use of or reliance on the information in this book is at your own risk and
the authors and O’Reilly Media, Inc., disclaim any responsibility for any resulting damage or
expense. The content of this book represents the views of the author only, and does not represent
the views of O’Reilly Media, Inc.

ISBN: 978-1-449-30345-7

[M]

Chapter 1: Contentsii

To Dad,

It all started with that TRS-80.

iii

Chapter 1: Contentsiv

ConTenTs

AbouT The AuThor ...viii

foreword ... ix

PrefACe ... xi
Who Should Read This Book xii
What You Will Learn xiii
Conventions Used in This Book xv
Using Code Examples xv
Safari® Books Online xvi
How to Contact Us xvii

InTroduCTIon To XCode ... 1
Developer Registration 1
Installation 2
Xcode 4
Interface Builder 26
Connections 30
Game Logic 34

hello Pong ...38
Project Creation 40
Laying Out the Game Pieces 43
Multi-touch 49
Animation 59
Collision 63
Scoring 65
Finishing Touches 69
Sounds 81

v

ConTenTs

grAPhICS ...88
Introduction 90
Bitmaps and Vectors 91
Image Formats 93
Retina Display 94
Creating Images for an Air Hockey Game 96
Application Integration 116
Build and Run 121

PhySICS .. 122
Paddle Physics 123
Puck Physics 139

SoundS ... 158
What Is Sound? 159
Creating Sounds 163
Downloading Sounds 163
Recording Sounds 164
Editing Sounds 167

CoMPuTer AI .. 172
Computer Player Menu 173
Computer Player 183
Computer Difficulty 205

Chapter 1: Contentsvi

ConTenTs

APP STore ... 212
Screenshots 213
Creating the Application Description and Keywords 216
Submitting Metadata to iTunes Connect 218
Archive and Submit 224
App Review 226
App Marketing and Sales 235
Conclusion 244

IndeX .. 246

vii

abouT The auThor

Todd Moore founded TMSOFT to create unique
smartphone applications and games. One of the few
developers to have had two apps simultaneously in
iTunes’ Top 20 Paid Downloads, his most popular
game, Card Counter, was featured by Engadget, the
Los Angeles Times, and CNET TV. Todd’s most popu-
lar application, White Noise, was featured by iTunes,
Health Magazine, The Washington Post, PC Magazine,
and Late Night with Jimmy Fallon.

Todd started his professional career as a student
trainee for the CIA, and after graduating from Old

Dominion University with a degree in computer science, he designed network
security and cyber forensic products. Since then, he’s had numerous appear-
ances in front of audiences: everything from demonstrating how to crack a
popular VoIP application at DEFCON 12 to competing on the NBC reality
show Treasure Hunters.

About the Author

Chapter 1: About the Authorviii

foreword

Preface

With the first Apple][it was very important for me to have a manual that would
lead others to success and learning right from the get-go, even if the user had no
relevant experience. That’s how we learn. We start entering code others wrote to
see how it works and then over time we learn variations.

One of my skills has always been designing things with the absolute minimum
amount of chips. Before starting Apple, I saw the game of Pong at a bowling alley
and I thought it would be fun to try building it on my own. My version didn’t have
anything to do with Atari’s, but I did do it at least a year before they came up with a
home version of the game that worked with your TV.

All in all, I ended up with 28 chips for my Pong design. This was amazing because
it was back in the days before microprocessors appeared. Every bit of the game
had to be implemented in wires and small gates. There wasn’t a software program
that was loaded and executed, it was all hardwired.

I visited my teenage friend Steve Jobs, who was working at Atari, and showed
it to a group of engineers there. And they loved it! Later on, Steve called me
to say that Atari wanted to do another Pong-like game. Atari’s founder Nolan
Bushnell wanted me to do it because he knew how good I was at doing designs
with the fewest possible chips. Nolan had been complaining that the Atari
games were going higher and higher in chip count, approaching two hundred
chips for a single game. He wanted them to be simpler. And he’d seen how
good I was at that.

They wanted a one-player version of Pong, but with bricks that would bounce the
ball back to the paddle. It was called Breakout, maybe you remember it? So not
even thinking about it, I said, “Sure.” Atari wanted it using the fewest chips possible
and I was up for the challenge.

The whole game was implemented in four days and used only 45 chips.

ix

foreword

The reason I like this book and agreed to write this foreword is because it
carries a message I’ve been holding closely my whole life. It is about simplicity
and sophistication. Doing more with less. This recently has become even more
important with today’s mobile devices like the Apple iPhone.

Engineers should strive to do things more perfectly than even they think is pos-
sible. Every tiny part or line of code has to have a reason, and the approach has
to be direct, short and fast. We build small software and hardware components
and group them into larger ones. We write tiny bits of code to turn things on and
off. Nothing would be elegant or beautiful without the engineer really thinking
it out—really thinking about how to create the best possible end result with the
fewest number of components or lines of code.

We build upon and build upon and build upon, just like a painter would with colors
or a composer would with musical notes. And it’s this reach for perfection—this
striving to put everything together, so perfectly, in a way no one has done before—
that makes an engineer or anyone else a true artist.

—Steve Wozniak

Chapter 1: Acknowledgmentsx

PrefaCe

The App Store is one of the most innovative ways for an indie developer to publish
their ideas to the world. You have probably heard the stories of developers striking
it rich from an iPhone game they created in their spare time. Money is certainly a
good motivator and why many developers are racing to get their ideas published.
Do you have the next big game idea? This book is the complete do-it-yourself guide
for anyone wanting to make the journey from game idea to App Store.

I’ve never seen such a widespread interest in creating apps and games than right
now. Everyone from full-time professionals to children with iPod touches will
stop and ask me the same questions: You have games in the App Store?” “How
long does it take to create them?” And the one I hear most, “Can someone like
me do it?” It seems as though everybody is interested in creating games for this
new platform, but most just don’t know where to start.

My entry into app development began August of 2008 when I started working on
BubblePop. It’s a game where you have to quickly pop moving bubbles filled with
random numbers, and you have to do it in the correct order. I wanted my first
game to be simple enough to quickly teach myself the platform, but challenging
enough so my friends who helped test it actually found it fun to play.

When I started, I had no knowledge of the Mac, Xcode, or Objective-C. I also
only had nights and weekends to work on my game. At the time, there weren’t
any relevant books and what could be found online was more about creating apps
for jailbroken iPhones and not the official iPhone SDK. Even though I had a lot
of things to learn and a full-time job during the day, I was still able to finish my
game in a week.

I plowed my way into the App Store through trial and error. Now it was time to
wait. My account and game needed to be approved by Apple. It seemed to take
forever. It was torture. The day finally came when all the contracts were approved
and my game was given the green light. I felt like a kid on Christmas day. It was

xi

PrefaCe

an amazing feeling seeing my work published on iTunes and available for the
world to purchase.

My goal for creating my first game wasn’t to make a million dollars. It was to
learn the platform, create a fun game for my iPhone, and hopefully make enough
money to pay for the 24-inch iMac that I just bought. As it turns out, I ended up
making much more than that—especially when two of my apps, White Noise and
Card Counter, hit the big time. In February of 2009, they were both ranked in
the Top 20 overall for paid apps. I felt like I won the lottery when the sales report
showed I was making over 10 times my current job salary. This was the moment
I decided that my fun little hobby should become my full-time job. I have been
creating apps and games ever since. I hope you can do the same.

—Todd Moore

who Should read This book
I have been approached by numerous people who have ideas for games but just
don’t know where to start. If you have the funds, you could hire a team of develop-
ers and artists to create your vision. I’ve found that experienced smartphone devel-
opers and graphic artists do not come cheap. As an indie developer, it is important
to learn all the skills necessary to do it yourself and hire out only when necessary.

This book is catered to those who have some coding experience but have never
developed for the iOS platform. Have you built applications that run on either the
PC or Mac platforms? Are you doing server-side web development with ASP.NET,
PHP, or Perl and want to try building native apps? Do you already know C or C++
but have no clue about Objective-C? Or do you just want to learn how to build an
iPhone game as fast as possible? If you answered “yes” to any of those questions
then keep reading. I’m writing this book as the guide I wish I had when I created
my first game.

Chapter 1: Acknowledgmentsxii

PrefaCe

what you will learn
I want to teach you how to create a game that uses those aspects of the iPhone
hardware that make it unique when compared to other platforms. Most games
are typically controlled using a directional pad, analog joysticks, and various
buttons. The iPhone and iPad give us a new form of input—Multi-touch. We
can track up to 5 individual touches on the iPhone and iPod touch screens and
up to 11 individual touches on the iPad. This opens up a whole new genre of
games that previously did not exist. This is why you are going to learn right
from the start how to handle multiple touches on the screen.

You will quickly build a two-player game that uses multi-touch—and the exciting
part is that most of it can be written with about 20 lines of code! Granted, it will
look like the 1972 game of Pong, which probably won’t be exciting for you unless
you grew up with Atari’s Home Pong console like I did. It is worth noting that the
same techniques used back then also apply today in terms of game elements.

Let’s think about that for a second. What does one of the oldest games, Pong, have
in common with a 3-D first-person shooter like Call of Duty: Modern Warfare?
Graphically, not much, but the game elements are actually the same—you control
a player, that player has a position within a defined world, there is a goal to accom-
plish, and a score to measure your progress. Whether you are racking up points
hitting a ball with a paddle or fragging your friends in a 3-D immersive world, the
overall game elements are still the same. This is why I will start with a very simple
concept and show you how to develop a more modern game moving forward.

You will take the game to the next level with flashy graphics and realistic sound
effects. I’ll show you a few tricks of the trade that are usually known only by
graphic artists and sound engineers. It is extremely important as an indie devel-
oper to learn these skills in order to save time and cut costs. That’s why this book

xiii

PrefaCe

has chapters dedicated toward creating graphics and sounds. I will show you how
to make the game look and sound like a real game of air hockey.

As you develop and test the new game you might notice that looks can be deceiving
as the game feels nothing like actual air hockey. The puck doesn’t move like it’s on a
sheet of ice. The table surface has no friction. Striking the paddle against the puck
produces incorrect angles and velocity. You are noticing things about the underlying
physics of the game that need to be fixed. I’ll show you how to apply the math you
learned in school, and thought you’d never use, to make our air hockey game feel like
it’s the real thing.

The final addition to the game will be creating a single-player mode that allows
you to play the computer. Computer AI can be the most complicated and impor-
tant part of any single-player game and this book makes the process as painless
as possible. The first step is creating an algorithm that gives the computer perfect,
unbeatable play. Games would not be fun if you couldn’t sometimes win, so we’ll
introduce a dumbness factor that will make the computer player appear more
human and make occasional mistakes. Having a mechanism to scale back how
smart the computer player is will in turn give you the ability to have multiple
levels of difficultly, ranging from easy to impossible.

Once the game is complete, you’ll learn how to prepare it for the App Store. You
will write a marketing description, create compelling screenshots, and submit
everything to Apple for approval.

Let the journey begin!

Chapter 1: Acknowledgmentsxiv

PrefaCe

Conventions used in This book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environ-
ment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

This box signifies a tip, suggestion, general note, warning, or caution.

using Code examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from

xv

O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s docu-
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Tap, Move, Shake by Todd
Moore (O’Reilly). Copyright 2012 Todd Moore, 978-1-449-30345-7”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® books online

Safari books online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles be-
fore they are available for print, and get exclusive access to manuscripts in devel-
opment and post feedback for the authors. Copy and paste code samples, organize
your favorites, download chapters, bookmark key sections, create notes, print out
pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

PrefaCe

Chapter 1: Acknowledgmentsxvi

how to Contact us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

 http://oreilly.com/catalog/0636920018414

To comment or ask technical questions about this book, send email to:

 bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

PrefaCe

xvii

Chapter 1: Introduction to Xcodexiv

1
Introduction
to Xcode

developer registration
The first step in creating and publishing your game to the App Store is registering as
an Apple developer. Registration will get you access to technical resources and iOS
developer tools. This part of the registration is free but if you want access to Xcode
4, which is used in this book, you will have to grab a copy from the developer web-
site or Mac App Store. In order to publish apps in the App Store, you will need to be
registered as a full iOS developer, which costs $99/yr.

Navigate your browser to http://developer.apple.com/programs/register/ in order
to start the registration process. You will be prompted to create a new Apple ID
or use an existing one. The Apple ID allows you to access Apple information and
resources, register for events, and even purchase music and apps from iTunes.
Make sure that this is an email address you actively use, as Apple sends email
verification and developer correspondence to this account. If you are registering a
company, you should use a company email address as your Apple ID.

If you register a new Apple ID, then you will need to create a personal profile. The
profile includes an email address and password that will become your Apple ID. You
will be prompted for this information to access certain areas of the Apple Developer
website. In addition, you will be required to fill out a professional profile, accept the
legal agreement, and verify your email address.

Now that you have an Apple ID, you can purchase the iOS Dev Center program
and download the latest version of Xcode.

developer registration 1

Installation
Once Xcode has finished downloading and the image has been mounted, you can
proceed to install. Double click on the installer package, agree to licensing terms,
and specify where you want to install. Select a drive that has plenty of space (see
Figure 1-1), as installation will require over 10 GB of disk space. If needed, you may
need to clean up old downloads or empty the trash to free up some space.

figure 1-1. Select disk to Install Xcode
After selecting the disk where you want to install Xcode, click Continue and go
to the next screen. If you are installing a fresh copy of Xcode or upgrading from a
previous version, you can just accept the default Developer location, as shown in
Figure 1-2.

Chapter 1: Introduction to Xcode2

If you would like to have two different versions of Xcode installed,
changing the location to something other than the default will allow
for this. I typically will install beta versions of Xcode into a different
folder but keep the most stable version in the Developer folder. for
example, when Xcode 4 was still a developer preview, I specified the
folder DeveloperBeta while keeping Xcode 3 in the default Developer
directory. This strategy worked well and enabled me to work in both
versions of Xcode.

figure 1-2. Selecting location to install Xcode

After clicking Continue you will proceed to the installation screen where you will
click Install. Once the installation has started, it is a good time to go make a cup
of coffee, as it will take a while to complete.

Installation 3

Xcode
Now that Xcode has been installed, we will take a tour and learn a few
important features. Launch Xcode by navigating to the folder you specified
for Xcode installation and then open the Applications subfolder where you
will find the Xcode application. You should go ahead and drag it into your
Dock so you can quickly launch it in the future.

In order to see the Xcode workspace, you will first need to create a new project.
Either click on “Create a New Project” from the welcome splash screen, or select
File→New→New Project from the menu. At this point you will be presented with
numerous project templates (see Figure 1-3) that provide you a starting point for
your new application.

figure 1-3. Xcode project types

Chapter 1: Introduction to Xcode4

Project Types
There are several project templates that you can choose from:

Page-based Application

This includes a page view controller that displays items as pages, allowing you
to navigate between items by turning pages.

OpenGL Game

This template provides for an OpenGL ES-based view and a timer that
animates the view. Games that use OpenGL ES as a starting point will
require much more coding. If you want to use the powerful capabilities
of OpenGL ES, you should look at using a library such as cocos2d
(http://www.cocos2d-iphone.org/) versus starting with this template.

Master-Detail Application

This is an iPad-specific template that uses the split view controller to
display two independently controlled views on the screen. It is similar to
the Mail application on iPad, which uses a split view controller to display
a list of emails on the left side of the screen and the selected email in the
main window area. It also supports all screen orientations.

Tabbed Application

This template provides a Tab bar along the bottom and sets up a view con-
troller for your first Tab bar item. The App Store application is implemented
with a Tab bar that provides different ways to view apps in the store.

Utility Application

This template demonstrates how to create two different views that can be
flipped between. It sets up an Info button to flip the main view to the flip
side view. The flip side view includes a navigation bar with a Done button
to flip back. The iBooks application is similar in that you flip between your
bookshelf and the iBooks Store.

Xcode 5

Single View Application

This template provides a starting point for a single-view app. It includes a
view controller to manage the view, and a nib file that contains the view. This
is the template you will be using as the starting point for all the projects cre-
ated in this book.

Empty Application

This is the most basic of all the templates, as it just contains a window and
an application delegate.

Instead of doing a typical “Hello World” application, you are going to build
a really simple game while taking a tour of Xcode. Select the Single View
Application as your template, click Next, enter Game as the new name of the
project, and then set your Class Prefix to Game as shown in Figure 1-4. Change
the company identifier to either reflect your name, website, or company. Keep
the device family set to iPhone. I will not be covering Storyboard, Automatic
Reference Counting, or Unit Tests in this book, so leave those options dese-
lected. Click Next, which will prompt you for a location to save the project (if
you can’t make up your mind where to put it, the Desktop is fine). You also have
the option to enable source control by creating a local git repository. Although
I will not be covering source control, I highly recommend enabling this feature
if you do not already have a server set up. Click the Create button to generate
your new Game project.

Chapter 1: Introduction to Xcode6

figure 1-4. Creating the first project

Now that you have created a project, the Xcode main workspace window is
displayed. If at any point you would like to get more information about a
certain part of the interface, you can Control-click in a specific area and open
up a help option from the menu. We will now explore how to navigate around
the Xcode interface.

Xcode Interface
The Xcode interface is divided into four areas: Navigator, Editor, Utility, and
Debug (see Figure 1-5). In order to display all the navigation areas, you will need
to enable them from the View selector located on the right side of the toolbar. The
View selector contains three toggle buttons that either hide or show the Navigator
(on by default), Debug, or Utility Areas. The View menu can also be used to show
or hide the different areas.

Xcode 7

Editor Area

Debug Area

Navigator Area Utility Area

figure 1-5. Xcode workspace window

navigator Area

The Navigator Area is located on the left side of Xcode and allows for project
navigation in many different ways. The navigator selector bar along the top of
this area allows you to change between the different navigators: Project, Symbol,
Search, Issue, Debug, Breakpoint, and Log. Selecting items listed in any of the
navigators will open the associated file in the Editor Area. Along the bottom is
the filter bar, which displays additional operations such as filtering and searching
against the currently selected navigator. The filter bar will change to reflect the
operations that the currently selected navigator supports.

The Project navigator, which is shown by default, displays the contents of a proj-
ect as a list of groups (represented by folder icons) and files. This will probably
be your most used view, as it quickly lets you find and open everything used to
build your project, including source code and interface files. You may notice it
also displays a list of Frameworks that your project is linking against. The filter
bar at the bottom of the Project navigator lets you add new files (plus icon) to
your project. It supports different filters, such as showing only recently edited
files, files with source control status, and files with unsaved changes. In addition

Chapter 1: Introduction to Xcode8

there is a search field you can use for keyword searches over the filenames (not
the content) included in the view. For example, if you search for “view,” you will
see every filename that contains that word, including the GameViewController.h,
GameViewController.m, and GameViewController.xib files.

The Symbol navigator lets you browse all the symbols in your project, including
classes, protocols, functions, structs, unions, enums, types, and globals. You can
view the project symbols as either Hierarchical or Flat. The Hierarchical view will
display the entire class hierarchy or inheritance path of every object, which usual-
ly means starting with NSObject and navigating down. The Flat view will display
each symbol without the hierarchy so every symbol is displayed in a single list.
The Flat view is my preferred way of viewing classes, as it makes it easy to quickly
locate a symbol. The filter bar supports showing class symbols only (filter every-
thing but class names, including functions, structs, and globals), project-defined
symbols only (filter framework classes such as NSString), containers only (hides
class methods and variables), and showing symbols with a matching name typed
into the search bar. All the listings are sorted alphabetically, which makes it easy
to quickly locate methods of a specific class. As such, you may find it useful to en-
able the class and project symbol filters while leaving the container filter disabled.

The Search navigator lets you find specific text that is contained in any of the
project files. Every resulting keyword that matches will be added to the list. The
filter bar allows you to filter the search results displayed in the list.

The Issue navigator will display errors and warnings that are generated in the
project. Issues can be displayed while you are editing source code or from build-
ing the project. They can also be categorized either by file or type of issue. The
filter bar supports displaying issues from the latest build only, from the current
scheme, showing errors only, and showing issues with matching content.

The Debug navigator is used during the debug of your application, along with the
debug area, which we will discuss a little later. By default, the Debug navigator is
opened whenever you pause the application or the debugger hits a breakpoint.
Each thread in the application and its associated stack frames are visible within
this view. The filter bar allows for showing just threads that have crashed or
that contain debug symbols. It also includes a slider to control how much of the
thread stack is displayed.

Xcode 9

The Breakpoint navigator displays all the active and inactive breakpoints that have
been added to the project. The filter bar allows you to add a symbolic or exception
breakpoint, delete existing breakpoints, show active breakpoints only, and show
breakpoints with matching content specified in the search bar. If you Control-click
on the project icon, you can disable or delete all breakpoints in the entire project.

The Log navigator displays logs that Xcode created during project activities such
as build, debug, and source-control tasks. The filter bar lets you display only recent
logs or show logs with a matching name specified in the search bar.

editor Area

The Editor Area is located in the center of the Xcode workspace and is the place
where you will be spending most of your time. The Editor supports modification
of many types of data, including source code, property lists (.plist files), and user
interface (.xib) files. The Editor includes features that will aid you in writing source
code, such as Code Completion and Fix-it suggestions.

You can bring up Code Completion (Figure 1-6) by pressing Control-space bar
whenever you need suggestions on symbol names. Dismiss Code Completion by
pressing Control-space bar again. Navigate the suggestions list by using the up and
down arrow keys. Press Return when you want to use a symbol suggestion, and if
there are parameters to a method name, you can press Tab to fill in each one.

figure 1-6. Xcode code completion

Chapter 1: Introduction to Xcode10

Fix-it (Figure 1-7) scans your source code as you type and marks syntax errors
with a red underbar or a caret at the error location. Clicking on the symbol will
display a message about the syntax error and in some cases offer a fix. If a fix is
offered, you can select the correction and press Return to accept it. Pressing Esc
will cancel the operation.

figure 1-7. Xcode fix-it suggesting a correction

The use of fix-it requires building the project with the llVM compiler.
This is the default for new projects. however, if you are opening a project
created in a prior version of Xcode, you may need to change the com-
piler in the build settings. fix-it also requires fully indexing the project
before displaying syntax errors. Indexing will start automatically when
you first open the project. This process runs in the background and may
take a few minutes to complete.

The gutter and focus ribbon are vertical strips running down the left side of the
Editor window. The gutter allows you to manage your breakpoints for debugging.
Click in the gutter next to a line of source code and a breakpoint will be added at
that location. If you click the breakpoint again it will change to inactive. See
Figure 1-8 for examples of both active and inactive breakpoints in the gutter. To
delete the breakpoint, Control-click on the breakpoint and select Delete
Breakpoint from the pop up menu. The focus ribbon is located between the gutter
and the editor. It is used to hide or show parts of source code. If you move the

Xcode 11

mouse pointer over the focus ribbon it will highlight portions of the code that
you can fold. Clicking will then hide the code and represent it in the editor as an
ellipsis button, shown at the bottom of Figure 1-8. Clicking in the focus ribbon
next to the folded code will then make the code visible again. You can also
double-click on the ellipsis button in the source code editor to unfold.

figure 1-8. gutter showing breakpoints and folded
source code

utility Area

The Utility Area is used to supplement the information in the Editor Area. It is
located on the right side of Xcode and provides access to various inspectors and
libraries. Open up the GameAppDelegate.h file and make sure the Utilities view is
shown. You can hide or show the Utilities Area by using the View selector in the
toolbar, selecting View→Utilities→Show | Hide Utilities from the menu, or by press-
ing Option-Command-0. The File Inspector will now display information about the
file itself, allowing you to rename it, change its file type, get full path information,
modify localization, configure target membership, and modify text settings.

Chapter 1: Introduction to Xcode12

Just above the File Inspector is a pair of icons that let you switch between the File
Inspector and Quick Help, which is extremely useful in displaying help informa-
tion for items in the source editor. Placing the insertion point in an API symbol
will display Quick Help information. Give it a try by placing the insertion point
in the UIApplicationDelegate protocol of the GameAppDelegate.h file. Quick
Help will display information about the UIApplicationDelegate and include
links that will open to the full help documentation, as shown in Figure 1-9.

figure 1-9. Xcode Quick help

debug Area

The Debug Area is located along the bottom of Xcode and will open automatically
when you are running code or when the debugger stops at a breakpoint. This area al-
lows for control of your program’s execution while viewing variables and console out-
put. The area is divided into three sections, with a debug bar along the top, variables
on the left, and console output on the right. Although the view appears automatically,
there are times when you may need to make the view visible (use View→Show Debug
Area) such as when debugging has finished or when you want to view console output.

Xcode 13

building and running
In order to build and run the application, you need to set the Scheme that you
want to target. This can either be set to the Simulator or a device that you have
registered for development.

Simulator

Make sure the Scheme, which is located next to the Run and Stop buttons in
the toolbar, is set to iPhone Simulator. Clicking the Run button on the tool-
bar will build the application, install it in the Simulator, and run it (see Figure
1-10) with the debugger attached. You can also run the application by selecting
Product→Run from the menu or by using the Command-R keyboard shortcut.

Congratulations! You just made your first
application. Granted, it doesn’t do much, but
I’ve seen flashlight apps that didn’t do much
more. Now that the Simulator is up and
running, let’s go over a few common
functions, as shown in Table 1-1, that you
will find useful for testing applications.

figure 1-10.
Application running

in the Simulator

Chapter 1: Introduction to Xcode14

Table 1-1. Simulator operations
Menu operation description

Hardware→Device Changes the Simulator between iPad,
iPhone, and iPhone 4 (Retina display).
These devices all have different resolu-
tions, with iPad at 1024×768, iPhone
at 320×480, and iPhone 4 at 640×960.

Hardware→Version Changes the version of the current
Simulator, which allows you to verify
the application will run on older ver-
sions of iOS.

Hardware→Rotate Left | Right Rotates the Simulator into one of the
four orientations, including Portrait,
Landscape Left, Landscape Right, and
Upside Down Portrait.

Hardware→Shake Gesture Simulates shaking the device.
Hardware→Home Returns to the home screen from an

active application. You can also press
the home button on the Simulator
window.

Hardware→Lock This will enable the screen lock, which
lets you test when your application
goes inactive.

Hardware→Simulate Memory
Warning

Simulates a memory warning, which
can cause views in your code to be
unloaded. It is extremely useful in
testing if your application handles low
memory conditions correctly.

Xcode 15

Window→Scale Reduces screen resolution to half the
size. You can manually change the
scale of the Simulator to 50%, 75%, or
100%.

iOS Simulator→Reset Content and
Settings

Resets to factory default settings. If
at any point your simulator becomes
hung up or corrupted then this is your
best option to fix it.

It is important to always test your application on an actual iOS device. The
Simulator is just that, a simulation of the device. Nothing can replace running it
on the actual hardware that people will be playing your game on. There are also
limitations to what you can do within the Simulator, as it doesn’t support the
accelerometer or allow for true multi-touch. It is also beneficial to have devices
that are not using latest generation hardware because performance can be much
different between each generation. I test my apps and games on a lot of different
devices and iOS versions, but the one that finds the most issues is my original
iPhone running iOS 3.0. If you want to support all versions of iOS back to ver-
sion 3.0, then an old iPhone is a great device to keep in your testing arsenal.
Hopefully you already have an iPod touch, iPhone, or iPad that you can use for
testing your applications on a device.

device

In order to run the application on a device, you need to first connect the device to the
Mac using the USB dock connector. Change the current scheme from iOS Simulator
to iOS Device. Try running the application. If you have not already registered your
device for development, you will get notified that there is no provisioned device avail-
able. If that is the case, open the Organizer application by clicking on the Organizer
toolbar button on the far right side of the toolbar, or by clicking Window→Organizer
from the menu. In the Organizer application, click the Devices tab, and make sure the
connected device is selected in the Devices list. Click the Use for Development button
(Figure 1-11) and wait until the device is initialized. You may be prompted to log in
to your Apple Developer account so that the device can be registered and appropriate
information downloaded.

Chapter 1: Introduction to Xcode16

figure 1-11. Xcode organizer registering new device
for development

After the device has been successfully registered for development then you can
close Organizer and return to Xcode. You should notice that the name of the
device now appears in the current scheme.

Run the application and it will build, install, and run it on the connected device.
The application can be debugged on device just like it can be in the Simulator.
You will also notice when you quit the application that there is now an appli-
cation icon on the SpringBoard (iOS home screen) just like you downloaded
it from the App Store. You will now be able to launch the application on the
device without having the dock cable attached. However, in order to debug and
view console output from the app, you will need to leave the device connected
with the dock connector.

Xcode 17

Code Structure
Now that you know the layout of Xcode and are able to run the app in the
Simulator and device, let’s walk through the skeleton files that Xcode gave to you
when you chose the Single View Application project template. Make sure the
Project Navigator is selected in the Navigator Area and the groups are expanded
to reveal all the files in the project. Click on each file listed in Table 1-2 to view
the file contents in the editor window.

Table 1-2. Project files
filename description

GameAppDelegate.h Interface file for the application delegate,
GameAppDelegate, which contains properties
for the window (UIWindow) and view controller
(GameViewController).

GameAppDelegate.m Implementation file for the application delegate,
GameAppDelegate, which implements the
didFinishLaunchingWithOptions method to
display the main window. There are numerous
delegate methods that get called when the
application changes to different states.

GameViewController.h Interface file for the game view controller, which
is assigned as root view controller for the main
window.

GameViewController.m Implementation file for the game view controller,
which manages interactions with the interface. You
will do most of your work in this file.

GameViewController.xib User interface file (nib file) for the
GameViewController view. You will work within
this file to drop in UI controls and lay out the
primary interface of the application.

Chapter 1: Introduction to Xcode18

Game-Info.plist Application info file that specifies a lot of informa-
tion about the application, including name, version,
and which nib file to load for the main window.

InfoPlist.strings This file can be used to specify localized versions of
strings used in the application.

Game-Prefix.pch Prefix header that speeds up overall build times by
precompiling headers specified in this file. The con-
tents of this file and the files it includes should rarely
change, in order to speed up compilation.

main.m Includes the main function that is implemented to
set up memory management by creating an auto
release pool. It then calls the UIApplicationMain
function, which ultimately creates the main win-
dow and calls the application delegate. I have never
modified the main function for iPhone or iPad apps,
but in the case of Mac App Store applications, you
might add license key checks here.

I will now explore how an application starts up so you can better understand how
all of these files relate to each other.

Application States
I’ll show you how an application starts up and goes through the different states by
using the NSLog function. This function will log a message to the Apple System
Log facility. It supports variable arguments similar to how the printf function
works. These messages will appear in the Debug output window and are always
logged regardless if running in Debug or Release builds of the application.

All programs start with a main function and iPhone apps are no different. Open
up the main.m implementation file, which is usually located in the Supporting
Files group in the Project Navigator. The implementation of the main func-
tion is pretty small as it only creates an NSAutoreleasePool and then calls the

Xcode 19

UIApplicationMain function. The autorelease memory pool is used in the man-
agement of reference counted objects. You don’t need to worry too much about
its function, just know that it is needed to free some objects up when they are no
longer needed. The UIApplicationMain function creates the application object,
application delegate, and sets up the event cycle. Add a call to the NSLog function,
which will report when the program is in the main function of the application.
The main function should be modified to appear as follows (the line you must
add is shown in bold):

int main(int argc, char *argv[])
{
 NSLog(@"main");
 @autoreleasepool
 {
 return UIApplicationMain(argc,
 argv,
 nil,
 NSStringFromClass([GameAppDelegate class]));
 }

The main function will now write to the debug window the message "main" as
soon as the application starts. You are writing this message to show that the main
function does in fact execute prior to any of the application delegate methods. I
will investigate each of those methods next.

Open up the application delegate implementation by clicking on the
GameAppDelegate.m file in the Project Navigator. A delegate is kept informed
about the actions of another object. In the case of the application delegate, it
is notified by the application when it goes into different application states. For
example, the application delegate is notified when the application first launches
as well as when it terminates or goes into the background. The different applica-
tion states that the application delegate is notified about are listed in Table 1-3.

Chapter 1: Introduction to Xcode20

Table 1-3. Application state changes
application:didFinish
LaunchingWithOptions

Notifies the delegate that the app has launched; this
is usually the place to initialize application variables
and data structures, read in application configura-
tion, and decide which view will appear in the main
window. If your application persists its state between
launches, you should use this function to restore the
application to the previous state.

applicationDidBecome
Active

Notifies the delegate that the application has
become active. This will be called any time your
application moves from an inactive state to an
active state, including when it is first launched.
You should restart any tasks that were paused
when the application went into an inactive state.

applicationDid
EnterBackground

Notifies the delegate that the application is now in
the background. In iOS 4.0 and later, this method is
called instead of the applicationWillTerminate
method when the user quits an application that sup-
ports background execution. Applications compiled
for iOS 4.0 support quick switching, which just
suspends your application and does not terminate.
However, you should typically implement this func-
tion as if your application is about to terminate and
save any state required. If the device is rebooted, the
application will relaunch as a new process and not
enter the foreground from a suspended state.

applicationWillEnter
Foreground

Notifies the delegate that the application is about to
enter the foreground. This is typically handled by
restoring any tasks that were stopped when
the app entered the background state.
The applicationDidBecomeActive method will be
called after this method, as the application is going
from an inactive to active state.

Xcode 21

applicationWill
ResignActive

Notifies the delegate that the application is about to
become inactive. This occurs when the application
becomes interrupted, the user enables screen lock,
or the user quits the application. An application
interruption can be caused by an incoming phone
call, SMS message, or alarm.

applicationWill
Terminate

Notifies the application delegate that the app is
about to terminate. This gets called for devices
that do not support background execution or the
device is running iOS 3.x or earlier.

In order to illustrate the application going through the different application states
you should add NSLog messages to each of the delegate methods. You must modify
the implementation file (GameAppDelegate.m) to appear as follows:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window =
 [[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]];

 NSLog(@"didFinishLaunchingWithOptions");

 self.viewController =
 [[GameViewController alloc]
 initWithNibName:@"GameViewController" bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

- (void)applicationWillResignActive:(UIApplication *)application
{
 NSLog(@"applicationWillResignActive");
}

Chapter 1: Introduction to Xcode22

- (void)applicationDidEnterBackground:
 (UIApplication *)application
{
 NSLog(@"applicationDidEnterBackground");
}

- (void)applicationWillEnterForeground:
 (UIApplication *)application
{
 NSLog(@"applicationWillEnterForeground");
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 NSLog(@"applicationDidBecomeActive");
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 NSLog(@"applicationWillTerminate");
}

Next, open the GameViewController.m implementation file that is the primary
view controller for managing the view in this game. The view controller is noti-
fied when certain events happen to the view it is managing. This includes when
the view is loaded or unloaded and when the view will appear or disappear.
Modify the implementation so the code looks as follows:

- (void)viewDidLoad
{
 NSLog(@"viewDidLoad");
 [super viewDidLoad];
}
- (void)viewWillAppear:(BOOL)animated
{
 NSLog(@"viewWillAppear");
 [super viewWillAppear:animated];
}

Xcode 23

- (void)viewDidAppear:(BOOL)animated
{
 NSLog(@"viewDidAppear");
 [super viewDidAppear:animated];
}
- (void)viewWillDisappear:(BOOL)animated
{
 NSLog(@"viewWillDisappear");
 [super viewWillDisappear:animated];
}
- (void)viewDidDisappear:(BOOL)animated
{
 NSLog(@"viewDidDisappear");
 [super viewDidDisappear:animated];
}
- (void)viewDidUnload
{
 NSLog(@"viewDidUnload");
 [super viewDidUnload];
}

Make sure the current scheme is set to run in the iOS Simulator and run the
application. Once the application is displayed in the Simulator, look at the out-
put in the Debug window, which shows log messages and the order that each
method was called. It should look similar to the following:

2011-04-11 13:02:42.873 Game[22357:207] main
2011-04-11 13:02:43.207 Game[22357:207]
 didFinishLaunchingWithOptions
2011-04-11 13:02:43.208 Game[22357:207] viewDidLoad
2011-04-11 13:02:43.209 Game[22357:207] viewWillAppear
2011-04-11 13:02:43.210 Game[22357:207]
 applicationDidBecomeActive
2011-04-11 13:02:43.209 Game[22357:207] viewDidAppear

Chapter 1: Introduction to Xcode24

Note that after the main function is called, the first application delegate notifica-
tion is didFinishLaunchingWithOptions. After that, you will receive notifica-
tions in the view controller that the view did load (viewDidLoad), will appear
(viewWillAppear), and finally did appear (viewDidAppear). The application
delegate is notified that the application became active (applicationDid
BecomeActive) before the view finally appears.

Now quit the application by pressing the home button on the Simulator. The
following messages are logged:
2011-04-11 13:07:00.238 Game[22357:207]
 applicationWillResignActive
2011-04-11 13:07:00.240 Game[22357:207]
 applicationDidEnterBackground

Now relaunch the application from the SpringBoard (home screen) by tapping on
the application icon. The following messages appear in the log:

2011-04-11 13:07:01.563 Game[22357:207]
 applicationWillEnterForeground
2011-04-11 13:07:01.565 Game[22357:207]
 applicationDidBecomeActive

You have just walked through all the different application states that the game
will go into. You should take note that the application was never shut down and
applicationWillTerminate was not called. This will become important later
in the development of the game, as you will need to at least handle pausing and
resuming the game (especially when an animation timer is used). But I don’t
want to jump ahead of myself, as you need to first learn about Interface Builder
and how it can be used to build the game interface.

Xcode 25

Interface builder
The first game you will create (Figure 1-12) will pose a math problem and allow
the user to enter and submit an answer. If the answer is wrong it will let the user
try again, and if it is correct then a new math problem will be generated.

figure 1-12. Simple
math game

You will use Interface Builder to design the
interface and lay out all the controls
that you will need. Single click on the
GameViewController.xib file in the
Project Navigator to display the nib file in
Interface Builder, as shown in Figure 1-13. At
this time, make sure you have the Utility view
open (if it’s not, click View→Utilities→Show
Utilities), so you can use the various inspectors
required to create interfaces.

You will notice next to the File Inspector and
Quick Help that there are new inspectors to use
in Interface Builder: Identity, Attributes, Size,
and Connection Inspectors. At the bottom of the
Utility Area you will find the library pane, which
lists various things that can be added to a project.
Make sure you’ve selected the Object Library
(View→Utilities→Object Library) and you’ll see
UI controls that you can add to the view.

Chapter 1: Introduction to Xcode26

figure 1-13. Interface builder

The interface will use a label to ask a question, a text control to receive an answer,
and a button to submit and check if the answer was correct. Drag a Label from
the Object Library into the top center of the view in the main editor. Drag a Text
Field under that and to the left. Drag out a Rounded Rect button to the right of
the Text Field. When a Text Field is used for input, a keyboard appears that cov-
ers the bottom half of the iPhone screen. Because of this, you need to keep all of
these controls located in the top half on the view. Figure 1-14 shows how to add
these objects to the view.

Interface builder 27

Switch to the Attributes Inspector and click on the Label. Change the Text to “Ask
Question Here” and then adjust the size of the control so that it spans most of the
view width. Change the text alignment to center. The label should now appear
centered in the middle of the screen. If needed, you can drag the label around
on the screen until you see a blue line appear in the center, which tells you the
label is now located in the center of the containing view. Click on the Font but-
ton and modify the size to be 24. You may need to adjust the width and height of
the control if you find the text getting clipped. I ended up sizing the control to be
280×40. You can also open the Size Inspector if you want specify the exact width
and height of the control.

Now click on the Text Field and change the Placeholder text to Answer. The place-
holder text displays when text has not been entered into the control and serves as a
way to let the user know what type of input should be specified. You can also spec-
ify the type of keyboard that gets displayed when the user taps the control. Since
the game is asking a math question, it makes since to display only numbers. Scroll

figure 1-14. dragging objects into the view

Chapter 1: Introduction to Xcode28

down to the Keyboard attribute and change the value to Number Pad. In order to
make the answer a little easier to read, let’s adjust the font size to 18.

Click on the button and change the Title to display Submit inside of the button.
You can also double-click on the button to modify the title in place. Adjust the
height of the button to match the size of the text control. The interface should
now appear similar to Figure 1-15.

figure 1-15. Interface builder controls

Now that the interface has been created, you need to hook up the controls as
properties of the view controller. This will allow you to change the label text, read
the answer, and add logic to handle the tapping of the Submit button.

Interface builder 29

Connections
It is time to bridge the gap between the interface and the code. You do this by
creating referencing outlets between the controls contained in the view and the
view controller. The easiest way to do this in Xcode is to use the secondary
assistant so that both the interface and the header file of the view controller are
displayed next to each other. You may need to enable the secondary editor on
the Editor segment control located on the toolbar, as shown in Figure 1-16, or by
selecting View→Editor→Assistant from the menu.

figure 1-16. Showing the secondary editor using the
toolbar

The secondary editor will display the appropriate file in the secondary area, in
this case it will be the GameViewController.h file. If you do not see this file in the
secondary editor, you may need to change the editor to Automatic in the jump
bar, as shown in Figure 1-17.

figure 1-17. Secondary editor jump bar

Chapter 1: Introduction to Xcode30

Control-click on the top label to display the label properties for the control.
Create a new referencing outlet by clicking in the circle to the right of New
Referencing Outlet and dragging to just below the GameViewController inter-
face definition. As you are dragging you will see a line being drawn, as shown in
Figure 1-18, and also the location of where the outlet will be inserted.

figure 1-18. Creating a new referencing outlet

Make sure you release the mouse button when you see the “Insert Outlet” marker
displayed before the @end statement. You will now receive a pop-up that allows you
to specify the name of the property, as shown in Figure 1-19. Type “label” in as the
Name of the property and click Connect.

figure 1-19. Creating a new connection

Connections 31

You will repeat this operation again for the answer text field, but this time will
use a shortcut to make the connection. Control-drag directly from the text field
(without releasing the mouse button) and draw a line to the interface file right
below the previous property definition. Once the insert marker is in the appropri-
ate position, release the drag operation, and when prompted type in “answer” as
the Name of this property. If you have done this correctly, the interface file should
appear as follows:

@interface GameViewController : UIViewController

@property (retain, nonatomic) IBOutlet UILabel *label;
@property (retain, nonatomic) IBOutlet UITextField *answer;

@end

Now repeat the same operation for the button, but instead of creating a property
you will create an action. When the connection pop-up appears, change the con-
nection type from Outlet to Action. Now type in “submit” as the Name of the new
method. You should see the following added to the interface file:

- (IBAction)submit:(id)sender;

You have successfully connected the label and text field as properties and added
a submit method that will be called when the button is tapped. Xcode has not
only been editing the interface file for us, but also adding code into the imple-
mentation file. Let’s open up the GameViewController.m file and look at what was
added:

- (void)viewDidUnload
{
 NSLog(@"viewDidUnload");
 [self setLabel:nil];
 [self setAnswer:nil];
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

Chapter 1: Introduction to Xcode32

The viewDidUnload method now sets the label and answer properties to nil.
Xcode makes sure the program won’t have a memory leak by setting the prop-
erties to nil in the viewDidUnload method, which causes the controls to be
released.

The default behavior for low memory conditions is to release views that do not
have a superview. This could be views on the screen that are not currently dis-
played or active. It is extremely important whenever controls are connected as
retained properties of the view controller that they are properly released in both
the dealloc and viewDidUnload methods. I’ve seen a lot of strange issues occur
in apps that were caused by incorrect handling of viewDidUnload. Always make
sure retained user interface properties are set to nil so they will be released and
memory freed. Also, if you programmatically added views in the viewDidLoad
function, then you usually will need to remove those views in viewDidUnload so
the view can be properly unloaded. The view controller will reload the view again
when it is needed and all properties will be reconnected. Always test low memory
conditions in the Simulator by selecting Simulate Memory Warning from the
Hardware menu.

As you previously discovered, apps running on ioS 4 do not shut
down but instead go into a suspended state. An application that never
terminates means you really need to make sure you are allocating
and deallocating objects correctly. An application with a memory leak
may at some point consume so much memory that it will be killed
by the system. This would leave a bad impression on your users, as
they would think your application has bugs (which it does!). Interface
builder helps to make the process easier by adding code to release the
properties in the dealloc and viewDidUnload functions.

Connections 33

You will also notice a submit method has been stubbed out for us to implement.
This method was connected as an action and will be called when the user taps the
button:

- (IBAction)submit:(id)sender
{
}

Now that you have created the interface and made all the connections it is finally
time to do some coding.

game logic
You will write code to ask a math problem and then wait for the user to submit an
answer. Once submitted it will alert the user if the provided answer was correct or
not. If the answer was correct then a new question is generated. If the answer was
wrong then it will allow the user to try again.

You will first create a method that generates a math problem and records the cor-
rect answer. Add the following to the GameViewController.m implementation file
above the #pragma directive that appears before viewDidLoad function:

- (void)generate
{
 // pick two numbers between 1 and 9
 int a = 1 + arc4random() % 9;
 int b = 1 + arc4random() % 9;

 // calculate the sum
 int sum = a + b;

 // create our question
 label.text = [NSString
 stringWithFormat:
 @"%d + %d = ", a, b];

 // save the answer in the tag property of the label
 label.tag = sum;
}

Chapter 1: Introduction to Xcode34

This function picks two numbers between 1 and 9 using the arc4random() func-
tion. The arc4random() function is the preferred way of generating random
numbers. It does not require seeding like the rand() or random() functions you
may have used if you’ve done any C programming. The sum is then calculated
and the text of the label is updated to ask what “a + b =” by creating an NSString
and using the stringWithFormat method. This method is very similar to printf
(used in C programming) in that variable arguments can be specified in the cre-
ation of a string. I am utilizing the tag property of the label to store the answer.
The tag variable is available in all UIView derived classes and is mainly used for
identification purposes, but you can set it to any integer value because it is there
for your use only and has no bearing on the control or its behavior.

Now you need to call the generate function when the view loads. This will make
sure the label has a question already loaded before the view actually displays.
Modify the viewDidLoad implementation to appear as follows (the line you must
add is shown in bold):

- (void)viewDidLoad
{
 NSLog(@"viewDidLoad");
 [super viewDidLoad];

 [self generate];
}

In the submit method you will check if the answer given is the correct one and
generate an alert message to the user. Modify the submit function to appear as
follows:

- (IBAction)submit:(id)sender
{
 // convert our answer text value into an integer
 int num = [answer.text intValue];

 // check if it is correct by comparing to the label tag
 UIAlertView *alert;
 if (num == label.tag)
 {
 // answer was correct

game logic 35

 alert = [[UIAlertView alloc]
 initWithTitle:@"Correct"
 message:@"Let’s try another one!"
 delegate:self
 cancelButtonTitle:@"OK"
 otherButtonTitles: nil];

 // use the alert tag to mark that answer was correct
 alert.tag = 1;
 } else
 {
 // answer is incorrect
 alert = [[UIAlertView alloc]
 initWithTitle:@"Wrong!"
 message:@"That answer is incorrect."
 delegate:self
 cancelButtonTitle:@"Try Again"
 otherButtonTitles: nil];
 }

 // show and release the alert
 [alert show];
 [alert release];
}

The submit function first retrieves the answer from the text field as an integer
value. Since the text property is an NSString, you can use the intValue method
to convert the string value into an integer. Now that you have the answer as an
integer, you can compare it to the tag property that was set in the label to see if
the answer was correct. You then create an alert message with either a correct or
incorrect message. I am utilizing the tag property of the UIAlertView to store if
the answer was correct or not. The tag is by default set to 0, so you will set it to 1
when the answer is correct.

You will now need to handle when the user dismisses the alert view and check the
tag variable to see if the answer was correct. If it was correct then you will gener-
ate a new question and clear out the previous answer. Insert this code below the
submit method:

Chapter 1: Introduction to Xcode36

- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (alertView.tag == 1)
 {
 // generate a new question
 [self generate];

 // reset our previous answer
 answer.text = @"";
 }
}

Now build and run the game either in the Simulator or on the device. Tap the
answer control to bring up the keyboard, which will allow you to specify numeric
value. Try providing both correct and wrong answers to verify the game logic.

As a final touch, I want to have the keyboard display automatically when the
application launches. This way the user can just specify the answer immedi-
ately instead of having to tap the control first to display the keyboard. In order
to do this, you need to specify that the answer control is the first responder.
This has the same effect as tapping on the control, so the keyboard will appear
as soon as the view is displayed. Modify the existing viewDidAppear method
to the following:

- (void)viewDidAppear:(BOOL)animated
{
 NSLog(@"viewDidAppear");
 [super viewDidAppear:animated];
 [self.answer becomeFirstResponder];
}

And there you have it, you just created a simple math game using only a few lines
of code. In the next chapter, you will create a more sophisticated game that uses
animation, collision detection, and multi-touch.

game logic 37

Chapter 2: hello Pong38

2
hello Pong

My addiction to playing video games started when my father purchased Atari’s
Home Pong console. It plugged into a standard television, had two controllers, and
displayed only in black and white. There were two white rectangles on each side of
the screen that represented each player’s paddle. The controller had a rotating dial
that placed the paddles into different vertical positions. There was a puck that was
represented by a small white square that bounced off the walls and player paddles.
Each successful paddle hit would increase the puck speed which in turn made it
more difficult to hit. If a player missed the puck then a point would be awarded to
the other player and the round would reset, putting the puck speed back to normal.

Although Pong didn’t sport flashy graphics and sounds, it had all the typical elements
that current games have: an objective to accomplish, player representation in a world,
a score that measures progress, and a way to finish the game. The Atari engineer that
designed and built Pong was given the project as a training exercise to help him get
acclimated at creating games. I feel that this exercise holds up even today as a great
way to teach how to create a game on the iPhone (see Figure 2-1). You will learn how
to implement multi-touch controls, animation, collision detection, and scoring.

figure 2-1. The Paddles game running in
the iPhone Simulator

 39

Project Creation
You need to start by opening Xcode and creating a new project (File→New→New
Project) from scratch called Paddles. Select the iOS/Application/Single View
Application template, and click Next. Enter “Paddles” as the product name and
Class Prefix, put in your company identifier, change the Device Family to iPhone,
and deselect the three checkboxes below. Click Next, as shown in Figure 2-2.
Choose a location for this new project and click Create.

Once Xcode generates the new project, Xcode opens the target settings page,
where you will need to adjust a few settings. You’ll see how to do that next.

figure 2-2. Creating a new project: Paddles

Chapter 2: hello Pong40

Target Settings
The Summary page for the Paddles Target displays a few items of importance,
including the supported devices and the Deployment Target version. The Devices
pop-up lets you choose to support either iPhone, iPad, or Universal (which sup-
ports both devices in a single application). Leave supported devices set to iPhone
and change the Deployment Target to 3.0, which will allow the application to
install on iOS versions 3.0 and greater, as shown in Figure 2-3. It is always best to
keep the version number as low as possible, as you don’t want to exclude custom-
ers that may be slow to upgrade their device. The game you are creating does not
require features found only in newer versions of iOS.

Apps that use features that require a version greater than your deploy-
ment target will crash devices running earlier ioS versions. It is important
to handle version checks at runtime or raise your minimum deployment
target to match the features you are using. Always check the ioS docu-
mentation for the minimum ioS version required.

figure 2-3. Target settings and configuring deployment
Target to 3.0

You can also specify what the Supported Device Orientations will be for your
application—Portrait, Portrait Upside Down, Landscape Left, and Landscape Right.
This is more important for iPad apps because they can launch into any orientation
(and must display different splash screens depending on orientation). However, this

Project Creation 41

could change for iPhone apps in the future, so it is best practice to tell iOS which
orientations the application supports. The Paddles game will only support portrait
mode orientation, so make sure that the Portrait button is the only item selected.

Next, you’ll need to make some changes to the App Info file.

The view controller class also specifies orientations that the underly-
ing views will support. The default implementation is to only support
Portrait mode, but the generated project code might override this to
support additional orientations. open the PaddlesViewController.h file
and remove the shouldAutorotateToInterfaceOrientation method
if it exists. This will ensure the view controller will not rotate our view
while playing the game.

App Info
iPhone games will typically want to use the entire real estate of the screen,
which means hiding the status bar. The App Info file contains many settings
that describe the application to iOS, including the app version, icon files, and
the display name. This information can be edited by either expanding the
Supporting Files folder and opening Paddles-Info.plist or by selecting the Info
tab from the Paddles Target. There are many settings that are not visible by
default and hiding the status bar is one of them. You can add a new item by
clicking on an existing row and clicking the plus icon or by option clicking to
the pop-up menu and choosing Add Row. Use the dropdown to the right of the
Key name entry to change it to “Status bar is initially hidden” and set its value
to YES, as shown in Figure 2-4. The reason you want to do this here and not
within code is that with this setting, the system will slowly fade the status bar
out when the application is loading. It looks much better to have iOS animate
the status bar away while the app loads rather than waiting for the app to load
and then hiding it.

Chapter 2: hello Pong42

figure 2-4. removing status bar from the ioS application

laying out the game Pieces
I created my first iPhone game without using Interface Builder. This meant that
I had to allocate all my views, images, and labels by hand and tweak their posi-
tion and size until it looked right. Everything that I could quickly do in Interface
Builder, I wrote out in source code, which was extremely tedious and error prone.
If I could go back in time and give myself a 30 minute lesson on how to use
Interface Builder’s powerful WYSIWYG (what you see is what you get) editor
then my game would have been finished much sooner.

Interface builder
In the Project Navigator, click on the PaddlesViewController.xib file that displays
Interface Builder in the Xcode Editor Area and allows you to modify the user
interface. Next, make sure the Utilities view’s Attributes Inspector is open (click
View→Utilities→Attributes Inspector). The Utilities view appears on the right side
of Xcode and lets you choose from several inspectors by using the toolbar at its
top. In Figure 2-5, the Attributes Inspector is shown at the top with the Object
Library at the bottom. Click on the lone view that is sitting in the center of the
Interface Builder window. Next, you’ll see how to use the Attributes Inspector to
modify various properties for this, the root view.

laying out the game Pieces 43

now is a good time to familiarize yourself with the other inspectors avail-
able in the utilities view. hover your mouse pointer over the inspector
icons to reveal the name of each inspector.

figure 2-5. utility Area, Attributes Inspector,
and object library

Chapter 2: hello Pong44

Change the View background color from Grey to Black. Change the Status Bar
under Simulated Metrics to None since it will not be displayed in the game. The
status bar reserves 20 pixels in height from the total screen height of 480 pixels.
This means the root view is 460 pixels in height when the status bar is displayed.
Click the Size Inspector tool, shown in Figure 2-6, and make sure the height is set
to 480, which matches the screen height dimension without the status bar.

figure 2-6. Size Inspector and setting origin

The Object Library view is located at the bottom of the Utility Area under the
inspectors and allows you to drag new UI controls into the view. There are many
objects to choose from, such as buttons, labels, and images. I will start with the
most basic of elements, which is the View and the object that all user interface
elements inherit from. The View object has properties such as frame dimensions
and a background color. This is really all that is needed at the moment because
the paddles and puck will be represented by white rectangles.

laying out the game Pieces 45

Scroll down the list of elements until you find View and drag it onto the existing
root view so that it becomes a subview or child of the existing root view. Adjust the
size of this view to be 64 pixels in width and 16 pixels in height, which represents
one of the paddles. You need to position this paddle at the top but leave enough
room for your finger to sit behind the paddle.

Click the Origin pane and change focus to center top, shown with the leftmost
arrow in Figure 2-6, which will adjust the origin numbers to match that location
on the paddle relative to the containing view. Adjust the X position of the paddle
to be centered at 160 pixels from the left of the screen. Adjust the Y position to be
64 pixels down from the top of the screen.

Copy and paste this paddle to create the second paddle of the same size. You want
the second paddle to be the same distance from the bottom of the screen as the
first paddle was from the top. The total height of the view is 480 so you need to
take the first visible pixel, which would be at 479, and subtract 64 from it (479 –
64 = 415). Change the origin pane to set focus on the center bottom of the new
paddle and adjust the position to 160, 415. Both paddles should now be centered
and be the same distance from their edge of the screen.

Create the puck by dragging another view in and resizing it to 16×16. Now click
on the Arrange Position View drop-down and click Center Horizontally In The
Container. Click Arrange Position View again and then Center Vertically In The
Container. The puck should now be located directly in the center of the view.

I want to add a middle line down the center of the screen that will help visual-
ize each player’s side of the screen. Drag another view in and size it to 320×5.
Center it vertically and horizontally like you just did with the puck. Click to the
Attributes Inspector and change the Background color to Grey. Notice the line is
placed on top of the puck because it was the last view added.

You can change the order of the view objects by using the Outline View located im-
mediately to the left of the editor. You may need to expand it by clicking the Outline
view button in the dock. This pane displays a hierarchical tree that reflects the

Chapter 2: hello Pong46

parent-child relationships between the objects in the nib file. The view objects at the
bottom of the list are drawn on top of those higher in the list. Drag the middle line
up to be the first entry in the Objects view hierarchy, as shown in Figure 2-7. The
middle line will now be drawn under the puck object. You could have also selected
Editor→Arrangement→Send to Back from the menu to perform the same operation.

figure 2-7. Changing the view hierarchy

Connections
As in the previous chapter, you will need to enable the secondary editor so
the associated PaddlesViewController header file is displayed next to the
Interface Builder editor. Control-drag from the top paddle to just below the
UIViewController interface definition. As you are dragging, you will see a
line being drawn, as shown in Figure 2-8, as well as the location of where the
outlet will be inserted.

laying out the game Pieces 47

figure 2-8. Connect outlets directly to source code to
automatically insert properties

As soon as you release the mouse button, you will receive a pop-up that lets you
specify the connection type, name of the object, and object type. The connection
should stay as an Outlet, set the name to viewPaddle1, and keep the type set to
UIView. Repeat this process for the other paddle and the puck, which will leave
the interface looking as follows:

@interface PaddlesViewController : UIViewController

@property (nonatomic, retain) IBOutlet UIView *viewPaddle1;
@property (nonatomic, retain) IBOutlet UIView *viewPaddle2;
@property (nonatomic, retain) IBOutlet UIView *viewPuck;

@end

Chapter 2: hello Pong48

Open the PaddlesViewController.m implementation file and you will notice, as in
the previous chapter, the views are being released in the dealloc and viewDid
Unload functions:

- (void)dealloc
{
 [viewPaddle1 release];
 [viewPaddle2 release];
 [viewPuck release];
 [super dealloc];
}

- (void)viewDidUnload
{
 [self setViewPaddle1:nil];
 [self setViewPaddle2:nil];
 [self setViewPuck:nil];
 [super viewDidUnload];
}

Now that you have connected the two paddles and puck as properties of the
controller, you have access to their position on the screen and can manipulate
them as needed. The next step will be to control the paddles using multi-touch.

Multi-touch
Apple’s introduction of the original iPhone brought the world an impressive list
of innovations in a really small device. Multi-touch is certainly at the top of that
list, and even though touch screens have been around for a long time, it was Apple
that showed the world how the technology could be effectively used in a consumer
product. They built the whole user interface of the operating system around the
concept of touch and multi-touch. The interfaces they designed were intuitive
and easy to use, which ultimately led to the iPhone becoming extremely popular.
Traditional desktop operating systems have attempted to add touch, but it
typically has been implemented by just mapping your touch position to the current
mouse position. That just doesn’t have the same feel as an iOS device, which was
designed from the ground up to have touch be its primary form of input.

Multi-touch 49

You may find touch to be initially similar to handling mouse events, but there are
plenty of differences. The first and most obvious is there can be multiple positions
on the screen at the same time. The original iPhone supports tracking up to five
touch locations at the same time. The second difference, which may not seem
so obvious, is that touch doesn’t always have a position on the screen. If you are
not touching the screen then there is no position at all. Compare that to a mouse
which always has a position on the screen represented by a pointer. Even if you
do not move the mouse, it still has an active position on the screen and as a devel-
oper you can query the system to retrieve that position. Because of these reasons,
I will cover how touch events work in more detail and the best practices for track-
ing multiple touches on the screen.

four Methods of Touch
Multi-touch is handled by adding four methods to your view controller object.
The system will call these methods whenever a touch changes into a different
state. The touchesBegan method is called when a touch is first detected on the
screen. The touchesMoved method will follow if the touch moves into a new
position. And finally, touchesEnded will be called when the touch is lifted off
the screen. It is possible that the touchesEnded method may not be called if the
system decides to cancel the touch. In this case, the touchesCancelled will be
called in its place. This can occur when the application gets interrupted by an-
other function, such as the device receiving a text message or phone call.

Let’s implement code into the view controller that will log each touch method to
the Debug window. Insert this code into the PaddlesViewController.m implemen-
tation file:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 NSLog(@"touchesBegan");
}
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 NSLog(@"touchesMoved");
}
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

Chapter 2: hello Pong50

{
 NSLog(@"touchesEnded");
}
- (void)touchesCancelled:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 NSLog(@"touchesCancelled");
}

Make sure Xcode is displaying the Debug window by enabling it from the toolbar
or selecting View→Show Debug Area from the menu. Run the program in the
Simulator and click the Simulator screen very quickly. The output window should
display something similar to the following:

2011-03-23 12:03:28.791 Paddles[6007:207] touchesBegan
2011-03-23 12:03:28.990 Paddles[6007:207] touchesEnded

Notice that it is possible that move events may not be generated during a touch
sequence, however, there is always a touchesBegan event followed by either a
touchesEnded or touchesCancelled event. Now click and drag your mouse
across the Simulator screen. You will notice this results in multiple move events
occurring between the touches
Began and touchesEnded events.

2011-03-23 12:04:09.025 Paddles[6007:207] touchesBegan
2011-03-23 12:04:10.884 Paddles[6007:207] touchesMoved
2011-03-23 12:04:10.933 Paddles[6007:207] touchesMoved
2011-03-23 12:04:11.066 Paddles[6007:207] touchesMoved
2011-03-23 12:04:11.766 Paddles[6007:207] touchesEnded

enable Multi-touch
At this point you have been using the Simulator to monitor each of the touch
events. The Simulator can emulate two touches by holding down the Option key
while clicking but it is very limited and best suited for pinch zooming. This is why
it is best to test on an actual device when coding multi-touch. Connect an iOS
device and then change the active project scheme to target the connected device.

If you build and run the application on the device and put two fingers on the
screen you will notice the second touch is being ignored. This is because views,

Multi-touch 51

by default, ignore multiple touches. You have to specifically enable multi-touch
for any view that requires it. You could do this within code by modifying the
multipleTouchEnabled property of the root view or use Interface Builder to
enable Multiple Touch, as shown in Figure 2-9.

figure 2-9. enable Multi-Touch using
Interface builder

The touch methods in the view controller will now be called for all touches on the
screen. It is important to know that each UITouch object is guaranteed to be the
same instantiation throughout the entire touch life cycle from start to finish. This
means that the each individual touch on the screen is represented by the same
UITouch object throughout all of the callbacks. In order to see this, add the fol-
lowing code snippet into all of the touch methods that you just added:

 for (UITouch *touch in touches)
 {
 NSLog(@" - %p", touch);
 }

Chapter 2: hello Pong52

This code will print out the memory address location of every UITouch object
contained in the set. If you run this on device and place two fingers on the screen
you will see output similar to the following:

2011-03-23 14:48:05.015 Paddles[2962:307] touchesBegan
2011-03-23 14:48:05.019 Paddles[2962:307] - 0x12eed0
2011-03-23 14:48:05.021 Paddles[2962:307] - 0x12f3b0
2011-03-23 14:48:05.077 Paddles[2962:307] touchesMoved
2011-03-23 14:48:05.080 Paddles[2962:307] - 0x12eed0
2011-03-23 14:48:05.083 Paddles[2962:307] touchesEnded
2011-03-23 14:48:05.086 Paddles[2962:307] - 0x12f3b0
2011-03-23 14:48:05.093 Paddles[2962:307] touchesEnded
2011-03-23 14:48:05.096 Paddles[2962:307] - 0x12eed0

Notice in the above example that two touches came into touchesBegan at the
same time at address locations 0x12eed0 and 0x12f3b0. The touch at address
0x12eed0 then moves while the other touch does not. I know the other touch did
not move because it was not included as part of the set. The touch at 0x12f3b0
then goes into an Ended state followed by the 0x12eed0 touch. At this point, both
touches have finished and the address locations could be reused by the system.
This is just a simple example of two touches on the screen at the same time. In
your testing, you will probably notice a lot more log messages being generated
and multiple touches being passed in through all the different touch methods.

Moving Paddles
You will now modify the touch handlers to move each paddle horizontally along
the x-axis. In order to get the actual touch position within the view, you need to
call upon a method of the UITouch object called locationInView. This method
will return the position of the touch relative to the view provided. You will pro-
vide the root view, which has dimensions set to the full size of the screen. The
return value is a CGPoint, which is a structure containing the X and Y position.
The screen is 480 pixels in height, so you can use the Y value of this point to
determine which paddle should be moved. If it is on the top half of the screen
or less than 240 pixels, you move paddle1. If it is on the bottom half, you move
paddle2. The paddle should only move along the x-axis so you need to set the
new center position to be the X value of the touch point while keeping the Y val-

Multi-touch 53

ue the same as it was before. You can make use of CGPointMake, which is a quick
way to initialize a new CGPoint structure. Replace the previous implementation
of touchesBegan with the following code:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // move the paddle based on which half of screen the
 // touch falls into
 if (touchPoint.y < 240)
 {
 viewPaddle1.center = CGPointMake(touchPoint.x,
 viewPaddle1.center.y);
 }
 else
 {
 viewPaddle2.center = CGPointMake(touchPoint.x,
 viewPaddle2.center.y);
 }
 }
}

The code above handles initial touches but does not handle if those touches move
along the screen. The paddles will be controlled by leaving your finger on the
screen and moving it back and forth, so you also need to handle the touches
Moved event. You can just call the touchesBegan handler for now to reuse the
paddle-moving logic. Replace the previous implementation of touchesMoved
with the following code:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 [self touchesBegan: touches withEvent: event];
}

Chapter 2: hello Pong54

Run this code on the device and notice that you can move both paddles at the
same time using multiple touches. Not bad for just a few lines of code! Keep play-
ing with the paddles and see if you can find any issues with the current imple-
mentation. There are two problems that I want to address in the next section.

Multi-touch Issues: Third finger on the glassy Knoll
The person that will be controlling the paddle will typically start by placing their
finger behind their own paddle on their side of the screen. They will move their
finger back and forth and usually not let up until the game has finished. There are
two issues with the current implementation that you may have noticed. The first
is you can slide your touch across the middle line and it will move the other play-
er’s paddle. As shown in Figure 2-10, player two moves their finger up past the
middle line and to the left. This would result in player one’s paddle moving out
of the path of the puck resulting in an unfair point given to player two. The sec-
ond issue is if there are any additional touches on the screen they will also affect
the player’s paddle position. The third finger on the screen, also shown in Figure
2-10, would cause player one’s paddle to jump out of the path of the puck result-
ing again in an unfair point given to player two. Both of these conditions should
be prevented so the game will not suffer from years of conspiracy theories about
what really happened that day you played air hockey on the glassy knoll.

figure 2-10. Issues with current
implementation

Multi-touch 55

This game should be no different from a real game of table tennis in terms of paddle
control. In a real game of table tennis, once someone grabs a paddle, that paddle
stays with them at all times until they are finished playing. In this game, the expected
behavior should be the same. Once a player has control over a paddle then that
paddle cannot be controlled by another until they let go of it. Therefore, you should
ignore any additional touches that occur on that players side. In addition, if a player
already has an assigned paddle then they should not be able to control another
paddle such as when crossing the middle line. In order to solve this you need to track
which touch belongs to which paddle. As previously discussed, touch objects will
always be the same object instantiation throughout the entire life cycle of touch
events. You can use that fact in order to bind a specific touch to a specific paddle.

Touch the right way
In order to track specific touch objects to each paddle, you will add a couple variables
into the PaddlesViewController interface. You will use touch1 as the active touch
bound to paddle1 and touch2 as the active touch bound to paddle2. If a paddle is
not assigned a touch then it will be assigned a nil value. Add the following variables
into the PaddlesViewController.h interface definition so it appears as follows:

@interface PaddlesViewController : UIViewController
{
 UITouch *touch1;
 UITouch *touch2;
}

You will modify the touchesBegan implementation to assign the paddle to
a specific touch only if it is unassigned. You still want to use the logic that
requires the touch to be placed at the top half of the screen to be assigned
to paddle1 and bottom half of screen for paddle2. If those conditions are
met then you will assign the correct touch object to the paddle and move the
paddle to the position of the touch as coded previously. Replace the previous
implementation of touchesBegan with the following code:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)

Chapter 2: hello Pong56

 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // check which half of the screen touch is on and assign
 // it to a specific paddle if not already assigned
 if (touch1 == nil && touchPoint.y < 240)
 {
 touch1 = touch;
 viewPaddle1.center = CGPointMake(touchPoint.x,
 viewPaddle1.center.y);
 }
 else if (touch2 == nil && touchPoint.y >= 240)
 {
 touch2 = touch;
 viewPaddle2.center = CGPointMake(touchPoint.x,
 viewPaddle2.center.y);
 }
 }
}

Now that you have assigned specific touches to each paddle, you need to handle
movement of the paddles. You can no longer just call the touchesBegan function
because paddles that have already been assigned a specific touch will be ignored.
Instead, you need to check if any of the touch objects provided in the set equals
one of the touches that has been assigned to a paddle. If you receive an update
to one of the assigned paddles then you can move it. It is safe to ignore all other
touches that have not been assigned a paddle. Replace the previous implementa-
tion of touchesMoved with the following code:

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // if the touch is assigned to our paddle then move it
 if (touch == touch1)

Multi-touch 57

 {
 viewPaddle1.center = CGPointMake(touchPoint.x,
 viewPaddle1.center.y);
 }
 else if (touch == touch2)
 {
 viewPaddle2.center = CGPointMake(touchPoint.x,
 viewPaddle2.center.y);
 }
 }
}

You need to handle when a paddle with an assigned touch has been lifted off the
screen by implementing the touchesEnded handler. If any of the touches pro-
vided in the set equals one of the assigned touches of a paddle, then the assigned
touch should be unbound from the paddle by setting the value to nil. If you didn’t
do this then you would most likely lose control of the paddle once the player
lifted their finger off the screen. This would be the equivalent of the controller
becoming unplugged from the console, which would not be good! Replace the
previous implementation of touchesEnded with the following code:

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 if (touch == touch1) touch1 = nil;
 else if (touch == touch2) touch2 = nil;
 }
}

You need to also make sure to handle the cancelled event, and the same code
written for the touchesEnded handler can be reused in this case. Remember
that this method is called when the touch has been interrupted. You can test this
event by either calling the device if it is an iPhone or by setting an alarm for iPod
touch. Before the interruption is displayed, you will notice that all touches will be
cancelled. If you did not handle the cancelled event, the players would most likely

Chapter 2: hello Pong58

not be able to control their paddles after the interruption completed. Replace the
previous implementation of touchesCancelled with the following code:

- (void)touchesCancelled:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 [self touchesEnded:touches withEvent:event];
}

Run it on the device and notice once your initial touch has been assigned to a
paddle, additional touches will not alter the position of that paddle. Also notice
that if an assigned touch slides across the middle line that it will not affect the
other paddle. The game now has a solid implementation of multi-touch.

Animation
You have the paddles moving based on where each player touches the screen, so
now it’s time to put the puck into motion. The game needs an animation loop that
will move the puck in a specific direction and at a specific speed. Add the following
variables to track direction and speed into the PaddlesViewController interface:

 float dx;
 float dy;
 float speed;

The dx and dy variables represent the direction the puck is travelling and the
speed represents how fast the puck is moving. I like to track speed and direction
as separate variables so it is easier to speed up the puck while the game progress-
es. The dx variable is the direction the puck is travelling along the x-axis. If dx is
–1 then the puck is moving left, if it is 0 then it is not moving, and if 1 then it is
moving to the right. The dy variable represents the direction the puck is travelling
along the y-axis. The dy variable will move the puck upwards if –1 and down-
wards if it is 1. The direction can also be any value between –1 and 1 so the puck
can be moving on the screen at any angle.

You need a way to reset this information at the beginning of every round so you
will add a function to handle initialization. The position and direction of the
puck should be set to random values at the start of the game and the start of each
round. You will again use the arc4random() function, as you did in the math

Animation 59

game, but this time it will be used to pick either –1 or 1. Add the following reset
function into the implementation file:
- (void)reset
{
 // set direction of ball to either left or right direction
 if ((arc4random() % 2) == 0) dx = -1; else dx = 1;

 // reverse dy if not 0 as this will send the puck to the
 // player who just scored otherwise set in random direction
 if (dy != 0) dy = -dy;
 else if ((arc4random() % 2) == 0) dy = -1; else dy = 1;

 // move point to random position in center
 viewPuck.center = CGPointMake(15 + arc4random() % (320-30),
 240);

 // reset speed
 speed = 2;
}

In the above code, I set the dx variable to randomly be either –1 or 1. This means
the puck will either be moving left or right at the start of the round. I also set the
dy variable to be either –1 or 1 if it is currently 0. However, if it is not 0 then it
will reverse the direction. I did this because at the start of a game the puck should
go toward a random paddle, but after a point is scored by a player I want it to go
in the opposite direction so the player who scored the point has to hit the puck
first.

The reset function also changes the position of the puck to be dropped some-
where along the center line. The speed is adjusted to 2, which is how many pixels
the puck moves in a single frame of animation. Why did I select 2? I initially had
it set to 1 but it just seemed too slow.

Add a simple animation function that moves the puck from its current center
position into a new position offset by direction and speed. The animate function
will be called repeatedly while the game is being played. Add the following code
below the reset function:

Chapter 2: hello Pong60

- (void)animate
{
 // move puck to new position based on direction and speed
 viewPuck.center = CGPointMake(viewPuck.center.x + dx*speed,
 viewPuck.center.y + dy*speed);
}

Add an NSTimer to the PaddlesViewController interface:

 NSTimer *timer;

You will schedule this timer to repeatedly call the animate function at an inter-
val of 1/60, or 60 frames a second. The code also makes sure the puck is visible
when the animation starts, and hides it when the animation has stopped. This has
the effect of taking the puck off the field, which will be useful if the game is ever
paused. That logic will be added later.

The screen refresh rate for the iPhone is 60 hz, which means the display
gets refreshed 60 times a second. Performing animation logic faster
than the screen refresh rate could cause some frames of animation to be
skipped. for smooth animation it is best practice to schedule the timer
as close to the screen refresh rate as possible.

Add the following code below the reset function, which will start and stop the
game animation timer:

- (void)start
{
 if (timer == nil)
 {
 // create our animation timer
 timer = [[NSTimer
 scheduledTimerWithTimeInterval: 1.0/60.0
 target: self
 selector: @selector(animate)
 userInfo: NULL
 repeats: YES] retain];
 }

Animation 61

 // show the puck
 viewPuck.hidden = NO;
}

- (void)stop
{
 if (timer != nil)
 {
 [timer invalidate];
 [timer release];
 timer = nil;
 }

 // hide the puck
 viewPuck.hidden = YES;
}

Add the viewDidLoad method by either uncommenting out the code provided to
you in the implementation file or by adding it near the end of the implementation
file. You will use this method to reset the game variables and start the animation
timer. This is the appropriate place to initialize things, as the view will have been
loaded and the view properties (paddles and puck) have been connected and can
be accessed:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self reset];

 [self start];
}

Run the game and you will see the puck quickly animate off the screen never to
return. In the next section, you will add code that will bounce the puck off the
walls and paddles.

Chapter 2: hello Pong62

Collision
The game needs a way to detect if the puck collides with either the wall or the
paddle. The good news is there is an easy way to determine if two views inter-
sect each other. The UIView class contains a frame variable, which is a CGRect
that represents the position and size of the view. You can use the function
CGRectIntersectsRect to determine if the frames of these views intersect.

You need to create a function to check if a given rectangle intersects with the
puck, and if so, allow changing the direction of the puck into a new specified
direction. The new direction of the puck will be optional such that if you specify
0 for either dx or dy then no change will occur. Insert this above the animate
function:

- (BOOL)checkPuckCollision: (CGRect) rect
 DirX: (float) x
 DirY: (float) y
{
 // check if the puck intersects with rectangle passed
 if (CGRectIntersectsRect(viewPuck.frame, rect))
 {
 // change the direction of the ball
 if (x != 0) dx = x;
 if (y != 0) dy = y;
 return TRUE;
 }
 return FALSE;
}

Now that you have a nice generic collision function, all that is needed is to
check for collisions in the animate function. In the case of the left wall you
need to create a rectangle that covers the left side of the screen. Creating
a rectangle with CGRectMake(-10,0,20,480) will create a vertical strip
along the left side of the screen. The wall actually starts offscreen at a posi-
tion of –10 and has a width of 20, which means half of the rectangle is on
the screen. You will create a similar wall on the right side of the screen with
CGRectMake(310,0,20,480). You can use the fabs() function, which takes
the absolute value of a floating point number to alter the puck direction. If the

Collision 63

puck hits the left wall then the X direction is changed to a positive number. If
the puck hits the right wall then the X direction is made a negative number.
This will have the effect of bouncing off the walls at the same speed that it hit
the wall. In both cases, the Y direction of the puck is ignored by passing in 0.
You wouldn’t want to send the puck back towards the player that originally hit
it. Add the following to the bottom of the animate function:

 // check puck collision with left and right walls
 [self checkPuckCollision: CGRectMake(-10,0,20,480)
 DirX: fabs(dx)
 DirY: 0];

 [self checkPuckCollision: CGRectMake(310,0,20,480)
 DirX: -fabs(dx)
 DirY: 0];

For paddle collision, the frame variable of the viewPaddle1 and view-
Paddle2 objects can be used. The Y direction of the puck can be adjusted to
bounce off the paddle. If the puck hits the top paddle then the Y direction
will be changed to 1, which sends it down the screen. If it hits the bottom
paddle then the Y direction will be changed to –1, which sends the puck up
the screen. The game should also adjust the X direction of the puck based
on where it strikes the player’s paddle. If the puck hits the far left side of the
paddle then it should bounce off in left direction and if it hits on the far right
side then it should bounce off in the right direction. If you calculate the dif-
ference of both X center positions then it will give you either a negative or
positive number depending on where it hit. Since the paddle is 64 pixels in
width, you can divide the difference by 32 to normalize the resulting value
between –1 and 1. For example, if the center of the puck hits the far left side
of the paddle, the difference between both centers along the x-axis would be
–32. If you took the difference and divided by 32 then it would result in dx

Chapter 2: hello Pong64

being set to –1, which moves the puck in the left direction. Add the following
to the bottom of the animate function:

 // check puck collision with player paddles
 [self checkPuckCollision: viewPaddle1.frame
 DirX: (viewPuck.center.x -
 viewPaddle1.center.x) / 32.0
 DirY: 1];

 [self checkPuckCollision: viewPaddle2.frame
 DirX: (viewPuck.center.x -
 viewPaddle2.center.x) / 32.0
 DirY: -1];

You should now be able to play the game and find that the puck bounces off the
left and right walls and off the top and bottom paddles. You will also notice that
if the puck misses a paddle, it will leave the field never to return. You will need to
handle this condition and also keep track of each player’s score.

Scoring
You need to add a couple labels to the view so you can track scores. Bring up
Interface Builder and edit the PaddlesViewController.xib file again. Drag over a
new label, set the initial Text value to “0,” change Alignment to center, and adjust
the font size to at least 24. Move the label flush against the right edge of the view.
Now switch over to the Size Inspector and change the Origin to the center position.
Modify the Y value to be 200, which is 40 pixels above the center line. The result
should look similar to Figure 2-11.

Scoring 65

figure 2-11. Adding score labels to the view

Copy and paste that label and then position it below the middle line at roughly
the same distance. Make sure it is flush against the right side of the view and then
change the Y origin to 280, which is 40 pixels below the middle line.

Just as you did before, create referencing outlets of the labels to the view controller
so they can be accessed as properties within the code. Name the labels viewScore1
for player one’s score and viewScore2 for player two’s score. The resulting interface
should look similar to the following:

@interface PaddlesViewController : UIViewController
{
 UITouch *touch1;
 UITouch *touch2;

 float dx;
 float dy;
 float speed;

Chapter 2: hello Pong66

 NSTimer *timer;
}

@property (retain, nonatomic) IBOutlet UIView *viewPaddle1;
@property (retain, nonatomic) IBOutlet UIView *viewPaddle2;
@property (retain, nonatomic) IBOutlet UIView *viewPuck;
@property (retain, nonatomic) IBOutlet UILabel *viewScore1;
@property (retain, nonatomic) IBOutlet UILabel *viewScore2;

@end

You need to add a new function to check if a goal has been scored by either of the
players. If the puck hits the top edge of the screen then player two will receive a
point. If the puck hits the bottom edge of the screen then player one will receive
the point. In order to add a point to the score, you can convert each of the score
labels into integer values. The NSString class has a method called intValue that
will return the integer value of the string.

The intValue method always returns an integer no matter what is con-
tained in the string. If the text is something other than a number, such as
letters or symbols, it will return 0. If there is white space at the start of the
value, it will skipped. It also will return the value INT_MAX or INT_MIN on
overflow.

The integer values of each label will be stored into s1 and s2 variables and then
incremented by one depending on which player scored the point. The last step
is to convert the scores back into strings, update the label values, and reset the
round. The checkGoal function will also return whether a goal was actually
scored or not. Add the following above the animate function:

- (BOOL)checkGoal
{
 // check if ball is out of bounds and reset game if so
 if (viewPuck.center.y < 0 || viewPuck.center.y >= 480)
 {

Scoring 67

 // get integer value from score label
 int s1 = [viewScore1.text intValue];
 int s2 = [viewScore2.text intValue];

 // give a point to correct player
 if (viewPuck.center.y < 0) ++s2; else ++s1;

 // update score labels
 viewScore1.text = [NSString stringWithFormat: @"%u", s1];
 viewScore2.text = [NSString stringWithFormat: @"%u", s2];

 // reset round
 [self reset];

 // return TRUE for goal
 return TRUE;
 }

 // no goal
 return FALSE;
}

Now add a call to checkGoal at the bottom of the animate function:

- (void)animate
{
 // move puck to new position based on direction and speed
 viewPuck.center = CGPointMake(viewPuck.center.x + dx*speed,
 viewPuck.center.y + dy*speed);

 // check puck collision with left and right walls
 [self checkPuckCollision: CGRectMake(-10,0,20,480)
 DirX: fabs(dx)
 DirY: 0];

 [self checkPuckCollision: CGRectMake(310,0,20,480)
 DirX: -fabs(dx)
 DirY: 0];

 // check puck collision with player paddles
 [self checkPuckCollision: viewPaddle1.frame

Chapter 2: hello Pong68

 DirX: (viewPuck.center.x -
 viewPaddle1.center.x) / 32.0
 DirY: 1];

 [self checkPuckCollision: viewPaddle2.frame
 DirX: (viewPuck.center.x -
 viewPaddle2.center.x) / 32.0
 DirY: -1];

 // check for goal
 [self checkGoal];
}

Run the game and you should see the score increment and the round reset when-
ever the puck hits the top or bottom edge. You have successfully implemented a
working scoreboard, but the game currently never ends. The next step will be to
add the game over condition, along with a few more finishing touches.

finishing Touches
The game needs a few final touches, such as displaying messages when a player
wins the game, letting players have a chance to get ready before the game starts,
increasing the difficulty of the game on each successful puck strike, and adding
the ability to pause and resume the game.

displaying Messages
The easiest way to prompt the user with a quick message is by using an alert view.
An alert prompts the user with a message and requires tapping a button to dis-
miss it. The UIAlertView class is used to display these messages and has a very
simple interface.

Add the following to the interface so you can track if a message is being displayed:
 UIAlertView *alert;

You will add a function that takes a message and displays it to the user. It will also
stop the animation timer so that the game will effectively pause while the message
is being displayed. In addition, it will not display any other messages by checking

finishing Touches 69

if a message was already displayed. Add the following into the implementation
file below the stop function:

- (void)displayMessage: (NSString*) msg
{
 // do not display more than one message
 if (alert) return;

 // stop animation timer
 [self stop];

 // create and show alert message
 alert = [[UIAlertView alloc] initWithTitle: @"Game"
 message: msg
 delegate: self
 cancelButtonTitle: @"OK"
 otherButtonTitles: nil];
 [alert show];
 [alert release];
}

You can use this function so when a new game starts it will prompt the user to get
ready. You will also create a newGame function that will reset the round, set scores
to “0,” and display the message “Ready to Play?” to the players. Add the following
code to the implementation file below the displayMessage function:

- (void)newGame
{
 [self reset];

 // reset score
 viewScore1.text = [NSString stringWithString: @"0"];
 viewScore2.text = [NSString stringWithString: @"0"];

 // present message to start game
 [self displayMessage: @"Ready to play?"];
}

Chapter 2: hello Pong70

The viewDidLoad function would be a good place to prompt the user to start the
game. You will remove starting of the animation timer in this method because the
game should officially begin after the player has tapped OK. Replace the existing
code in viewDidLoad to call the newGame function:

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self newGame];
}

The UIAlertView will call the delegate back when the user taps a button. If you
had more than one button on the alert message, you could check the button
Index parameter to determine that, but in this case there is only a single OK but-
ton so checking it is not needed. In order to handle the alert callback, add the fol-
lowing code below the newGame function:

- (void)alertView:(UIAlertView *)alertView
 didDismissWithButtonIndex:(NSInteger)buttonIndex
{
 // message dismissed so reset our game and start animation
 alert = nil;

 // reset round
 [self reset];

 // start animation
 [self start];
}

The above code will reset the alert variable to nil, reset the round variables, and
then start animation. If you run the game, you will now be prompted to get ready
before the game actually starts. You will also use this logic to display the “Game
over” message.

finishing Touches 71

game over
The game needs to have a score that, once achieved by either player, will end the
game and announce the winner. I recommend setting the ending score to a low
number, such as 3, so we can easily test the game over condition. I usually will use
a #define so that we can easily change the maximum score value in the future.
You will most likely want to increase this number or even make it configurable to
the end user at a later point. Add this definition to the top of the implementation
file:

#define MAX_SCORE 3

Now add the following code, which will let you know if the game is officially over.
You will convert both score labels to integers and check if they reached the maxi-
mum score that we just defined. It also returns if player one or player two has won
the game. Add the following to the top of the implementation file:

- (int)gameOver
{
 if ([viewScore1.text intValue] >= MAX_SCORE) return 1;
 if ([viewScore2.text intValue] >= MAX_SCORE) return 2;
 return 0;
}

Modify when the alert view is dismissed to check for the game over condition.
If the game is over, you will start a new game, which will prompt the user to get
ready to play:

- (void)alertView:(UIAlertView *)alertView
 didDismissWithButtonIndex:(NSInteger)buttonIndex
{
 // message dismissed so reset our game and start animation
 alert = nil;

 // check if we should start a new game
 if ([self gameOver])
 {
 [self newGame];
 return;
 }

Chapter 2: hello Pong72

 // reset round
 [self reset];

 // start animation
 [self start];
}

You need to add to the check goal function and prompt the user if a win has been
achieved. If a win has not been achieved then you just reset the round as before.
Modify the checkGoal function to appear as follows:

- (BOOL)checkGoal
{
 // check if ball is out of bounds and reset game if so
 if (viewPuck.center.y < 0 || viewPuck.center.y >= 480)
 {
 // get integer value from score label
 int s1 = [viewScore1.text intValue];
 int s2 = [viewScore2.text intValue];

 // give a point to correct player
 if (viewPuck.center.y < 0) ++s2; else ++s1;

 // update score labels
 viewScore1.text = [NSString stringWithFormat: @"%u", s1];
 viewScore2.text = [NSString stringWithFormat: @"%u", s2];

 // check for winner
 if ([self gameOver] == 1)
 {
 // report winner
 [self displayMessage: @"Player 1 has won!"];
 }
 else if ([self gameOver] == 2)
 {
 // report winner
 [self displayMessage: @"Player 2 has won!"];
 }
 else

finishing Touches 73

 {
 // reset round
 [self reset];
 }

 // return TRUE for goal
 return TRUE;
 }

 // no goal
 return FALSE;
}

Run and play the game until one of the players has scored 3 points. At this point
the game should announce the winner. If you dismiss the message, the game will
reset and then prompt you to get ready for a new game.

Increasing difficulty
It is important to explore ways to increase the difficulty of your game as it pro-
gresses. The game as it stands is very easy to play and it is possible that two play-
ers may never miss the puck. Here is a list that I came up with that would increase
the difficulty of the game:

• Increase the speed of the puck

• Decrease the size of the puck

• Decrease the width of the paddles

• Add additional objects in the path of the puck

You already have a speed variable that resets at the start of every round. The speed
variable is also applied to the direction of the puck when it is moved in the ani-
mate function. Increasing the speed of the puck every time the paddle strikes it
would be simple to implement. One important thing to know is there is a limit on
how fast the puck can move, as it could jump over an existing paddle or through
the rectangles used for the left and right wall. The paddles are 16 pixels in height
and the walls are 20 pixels in width. If the puck had a speed greater than those
amounts then it would be possible for it to jump over those objects and a collision

Chapter 2: hello Pong74

would not occur. You will limit the speed of the puck to a maximum of 10 pixels
per frame, which will ensure this condition will not occur. Add the following
function above the animate function:

- (void)increaseSpeed
{
 speed += 0.5;
 if (speed > 10) speed = 10;
}

Remember the collision function and how it returns TRUE if a collision occurred?
There was a reason you added that extra logic—it was so you could support
additional actions. Modify the animate function to increase the speed of the
puck when a paddle collision occurs:

 // check puck collision with player paddles
 if ([self checkPuckCollision: viewPaddle1.frame
 DirX: (viewPuck.center.x -
 viewPaddle1.center.x) / 32.0
 DirY: 1])

 {
 [self increaseSpeed];
 }

 if ([self checkPuckCollision: viewPaddle2.frame
 DirX: (viewPuck.center.x -
 viewPaddle2.center.x) / 32.0
 DirY: -1])
 {
 [self increaseSpeed];
 }

Play the game and notice that after every paddle strike the puck gets faster. See
how long you can keep the puck going to make sure it progresses to a difficulty
that will cause player mistakes. If you feel it is not challenging enough then you
could adjust the maximum speed or add a few of the other items discussed to
make it more challenging, such as decreasing the width of the paddles.

finishing Touches 75

Pause and resume
Games usually support allowing the user to pause and resume an active game.
There are a few scenarios that you should handle:

• Screen lock button is pressed

• Incoming phone call, text message, or alarm

• Home button pressed to launch another application

For starters, you need to add a couple public methods to the view controller to
support pause and resume. The pausing of the game will just stop the animation
timer and resuming the game will prompt the user that the game is paused. Once
the player taps OK from the message alert, the game will restart the round.

Add the following function declarations to the view controller interface after the
property definitions and before the @end:

- (void)resume;
- (void)pause;

The pause function will be implemented to just stop the animation timer. The re-
sume function will prompt the user that the game is paused. Add the following at
the end of the implementation file:

- (void)pause
{
 [self stop];
}

- (void)resume
{
 // present a mesage to continue game
 [self displayMessage: @"Game Paused"];
}

Chapter 2: hello Pong76

The application delegate has two callback methods that tell us when an applica-
tion becomes active and inactive. This is the best place to go ahead and call the
new pause and resume functions. This will handle all the events that I listed when
the game should pause, including screen lock, system interruption, and pressing
the home button.

devices running ioS 4 or greater go into a suspended state when the
home button is pressed. when the application resumes it will still have
all of the existing game state, which means the pause/resume logic will
work. devices running ioS 3 or earlier always terminate the application
when the home button is pressed. If you want to support pause/resume
on ioS 3 devices, you have to store the game state and reload it when
the application launches again.

Add calls to the new pause and resume methods from within the application
DidBecomeActive and applicationWillResignActive methods of the
PaddlesAppDelegate implementation file:

- (void)applicationWillResignActive:(UIApplication *)application
{
 [self.viewController pause];
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 [self.viewController resume];
}

Play the game and test all the different scenarios, such as locking and unlock-
ing the screen. The Simulator can be used to test locking the screen by pressing
Command-L or from the menu by selecting Hardware→Lock. It also supports fast
switching so you can press the Home button and then relaunch the app. The only
way to test proper handling of a phone call, text message, or alarm interruption is
by using an iOS device that supports those operations.

finishing Touches 77

Shake gesture
I will now investigate another type of input that can used on iOS devices: motion.
You already have a good handle on how touch events work, and motion events
are just as simple to support. As the device moves, the hardware reports linear
acceleration changes along the primary axes in three-dimensional space. You
could retrieve this continuous motion of data as a series of x,y,z values, but
doing so requires you to analyze each of the data points passed in and create an
algorithm to decide when a shake occurred. If every developer implemented their
own shake-detecting algorithm, then every app that supported shake would most
likely be implemented differently, resulting in some user confusion.

Apple decided to make this easier for developers in iOS 3.0 and came up with
the concept of motion events. Motion events use the device accelerometer or
gyroscope to calculate the type of motion that has been done with the device. As
of this writing, there is only one motion event supported and that is the shake
motion. Using this shake motion, as opposed to writing your own, allows the end
user to have a consistent gesture that can be used across multiple apps.

When the device shakes, the system will evaluate the accelerometer data for you,
and interpret it as a shaking gesture or not. The system only informs you when a
motion starts and when it stops. It doesn’t inform you about each individual mo-
tion, just when the overall motion begins and ends. For example, if you shake the
device quickly three times, you might only receive one shake motion.

The first thing you need to do in order to implement shake gestures is have the
view controller become the first responder. This may sound familiar to you be-
cause of the math game you created in Chapter 1. In that application, the control
asking for an answer became the first responder in order to display the keyboard
automatically without having to tap it first. In order to use motion gestures, you
need to do the same thing, but this time you will make the view controller the
first responder and not an individual control. You also need to add a method that
tells the system that the view controller can become first responder.

The best time to become the first responder is when the view appears. You should
also resign the view controller as first responder when the view disappears. Add
the following code into the PaddlesViewController.m file:

Chapter 2: hello Pong78

- (BOOL)canBecomeFirstResponder
{
 return YES;
}

Modify the viewDidAppear and viewWillDisappear methods as follows:

-(void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [self becomeFirstResponder];
}
- (void)viewWillDisappear:(BOOL)animated
{
 [self resignFirstResponder];
 [super viewWillDisappear:animated];
}

Now the view controller is set up to handle motion events. There are three meth-
ods that are used to handle motion events. They are motionBegan, motionEnded,
and motionCancelled. This is similar to how touches work, in that a motion
will begin and then it will either end or be cancelled. Notice there is not a move
method like there is in touch, as you are dealing only with full motions and noth-
ing in between. Add the following functions so that you can investigate how these
motion methods get called by logging each of the motion events:

- (void)motionBegan:(UIEventSubtype)motion
 withEvent:(UIEvent *)event
{
 if (event.type == UIEventSubtypeMotionShake)
 {
 NSLog(@"Shake Began");
 }
}
- (void)motionEnded:(UIEventSubtype)motion
 withEvent:(UIEvent *)event
{
 if (event.type == UIEventSubtypeMotionShake)
 {
 NSLog(@"Shake Ended");
 }

finishing Touches 79

}
- (void)motionCancelled:(UIEventSubtype)motion
 withEvent:(UIEvent *)event
{
 if (event.type == UIEventSubtypeMotionShake)
 {
 NSLog(@"Shake Cancelled");
 }
}

Run this in the Simulator and then select Hardware→Shake Gesture from the
menu. This will result in debug output that is similar to the following:

2011-05-21 16:14:22.196 Paddles[28765:207] Shake Began
2011-05-21 16:14:22.198 Paddles[28765:207] Shake Ended

Notice in the Simulator this results in both the motionBegan and motionEnd
events being immediately fired. There is no way to simulate a motion cancelled
event, so run it on your device to see what happens. You may notice that the
“Shake End” message can appear much later than the “Shake Begin” message.
And sometimes you might see the “Shake Cancel” message, especially if you start
to shake the device in one direction and then pause for a few seconds.

2011-05-21 16:25:34.669 Paddles[7830:707] Shake Began
2011-05-21 16:25:35.273 Paddles[7830:707] Shake Ended
2011-05-21 16:25:36.074 Paddles[7830:707] Shake Began
2011-05-21 16:25:38.547 Paddles[7830:707] Shake Cancelled

For the purposes of this game, I think it is safe to assume if a motion starts then
the game has somehow been interrupted. Maybe one of the players accidentally
knocked the iPhone off the table or somebody grabbed the device quickly and
put it in their pocket. In these cases, it would be best if you just paused the game.
Either comment out the motion methods that was used for debugging or replace
it with the following code:

- (void)motionBegan:(UIEventSubtype)motion
 withEvent:(UIEvent *)event
{
 if (event.type == UIEventSubtypeMotionShake)
 {
 // pause game then resume to display message

Chapter 2: hello Pong80

 [self pause];
 [self resume];
 }
}

You will notice that this code is calling both pause and resume in the same meth-
od. I originally created the pause and resume as two functions because of how
interruptions occur in the application. Usually there is one method that starts the
interruption and another to resume after the interruption has finished. In this
particular case, everything is done in a single step, which is why you need to call
both the pause and resume methods.

Run it again on the device and make sure the game pauses if you shake it. You may
want to revisit this code after the computer player is added and modify it to take a
power shot when the device is shaken. For now it will just be used as another way
to pause the game.

Sounds
Playing simple sound effects can be done by using System Audio Services. It is
recommended that the sounds be short in duration. Here are the iOS guidelines:

• Must be .caf, .aif, or .wav files

• The audio data in the file must be in PCM or IMA/ADPCM (IMA4) format

• The file’s audio duration must be less than 30 seconds

You will use this to play back three different sound files for wall collision, paddle
collision, and scoring a point. I have already created a few sounds that you can
integrate into the game that are available for download from http://oreilly.com/
catalog/0636920018414 or at my website http://toddmoore.com/. The files are
named wall.wav, paddle.wav, and score.wav. Once you have downloaded the ZIP
file, decompress them, and drag them into your Xcode. When prompted, make
sure the “Copy...” checkbox is selected, as shown in Figure 2-12, and click OK.
The sound files are now included as part of the application bundle and you can
access them from within the code.

Sounds 81

figure 2-12. Copying resources into your project

You also need to add the AudioToolbox framework to the application. Click on
the project file, then Paddles under target, Build Phases, and expand Link Binary
With Libraries. Click the plus icon at the bottom of the framework section, as
shown in Figure 2-13, and select the AudioToolbox framework. The application
should now be able to use the AudioToolbox library without linker errors.

Chapter 2: hello Pong82

figure 2-13. Adding the AudioToolbox framework

Add the AudioToolbox.h header file at the top of the PaddlesViewController
header file:

#import <UIKit/UIKit.h>
#import "AudioToolbox/AudioToolbox.h"

You need to create an array to hold the a sound identifiers that are giv-
en to you after loading each sound. Add the following code into the
PaddlesViewController interface:

SystemSoundID sounds[3];

After adding the sound array to the header you need to implement a function
that will load each of the sound files and store the results into the array. Add the
following to the top of the implementation:

#define SOUND_WALL 0
#define SOUND_PADDLE 1
#define SOUND_SCORE 2

Sounds 83

// load a sound effect into index of the sounds array
- (void)loadSound: (NSString*) name Slot: (int) slot
{
 if (sounds[slot] != 0) return;

 // Create pathname to sound file
 NSString *sndPath = [[NSBundle mainBundle]
 pathForResource: name
 ofType: @"wav"
 inDirectory: @"/"];

 // Create system sound ID into our sound slot
 AudioServicesCreateSystemSoundID((CFURLRef)
 [NSURL fileURLWithPath: sndPath], &sounds[slot]);
}

- (void)initSounds
{
 [self loadSound: @"wall" Slot: SOUND_WALL];
 [self loadSound: @"paddle" Slot: SOUND_PADDLE];
 [self loadSound: @"score" Slot: SOUND_SCORE];
}

Loading sounds using AudioServicesCreateSystemSoundID requires
that you dispose of the sounds when you are finished with them using
AudioServicesDisposeSystemSoundID. Add code to dispose of each sound
from the sounds array at the top of the dealloc method:

 // dispose of sounds
 for (int i = 0; i < 3; ++i)
 {
 AudioServicesDisposeSystemSoundID(sounds[i]);
 }

Modify the viewDidLoad function so the sounds will be loaded before the game
starts:

- (void)viewDidLoad
{
 [super viewDidLoad];

Chapter 2: hello Pong84

 [self initSounds];

 [self newGame];
}

Now lets add a simple method to play back a sound from a specified index of
the sounds array. The playback of sounds can be achieved in a single call to
AudioServicesPlaySystemSound. Although this doesn’t warrant creating a
separate method to call this, it has been my experience that you may end up
changing your audio implementation down the road and it will be much easier if
all playback goes through your own custom function. Add the following after the
initSounds function:

- (void)playSound: (int) slot
{
 AudioServicesPlaySystemSound(sounds[slot]);
}

Modify the animate function to play the appropriate sound if contact is made
with the wall or paddle. You will also play the score sound if a goal is made:

- (void)animate
{
 // move puck to new position based on direction and speed
 viewPuck.center = CGPointMake(viewPuck.center.x + dx*speed,
 viewPuck.center.y + dy*speed);

 // check puck collision with left and right walls
 if ([self checkPuckCollision: CGRectMake(-10,0,20,480)
 DirX: fabs(dx) DirY: 0])
 {
 // play hitting wall sound
 [self playSound: SOUND_WALL];
 }
 if ([self checkPuckCollision: CGRectMake(310,0,20,480)
 DirX: -fabs(dx) DirY: 0])
 {
 // play hitting wall sound
 [self playSound: SOUND_WALL];
 }

Sounds 85

 // check puck collision with player paddles
 if ([self checkPuckCollision: viewPaddle1.frame
 DirX: (viewPuck.center.x -
 viewPaddle1.center.x) / 32.0
 DirY: 1])
 {
 // play hitting paddle sound and increase speed
 [self increaseSpeed];
 [self playSound: SOUND_PADDLE];
 }
 if ([self checkPuckCollision: viewPaddle2.frame
 DirX: (viewPuck.center.x -
 viewPaddle2.center.x) / 32.0
 DirY: -1])
 {
 // play hitting paddle sound and increase speed
 [self increaseSpeed];
 [self playSound: SOUND_PADDLE];
 }

 // check for goal
 if ([self checkGoal])
 {
 // play scoring sound
 [self playSound: SOUND_SCORE];
 }
}

Run the game and now sound will be generated any time a collision is made with
the puck or a player scores a point. You will learn how to record and edit your
own sounds in Chapter 5.

Chapter 2: hello Pong86

If you do not hear any sounds make sure your device is not in silent mode.
This switch is located at the top lefthand side of the iPhone above the vol-
ume controls. Also make sure the device volume is all the way up. If you are
still having sound playback issues check that the sound files were properly
added to the project and that they are being initialized from within the code.

Sounds 87

Chapter 3: Touch and go88

3
graphics

Graphics are extremely important to any game, which is why I have created a
whole chapter on how to create and use them in your game. If one of your goals
is to have your game featured in iTunes (and it should be) then you need to make
sure your game makes the iPhone or iPad look visually stunning. Apple features
apps that make their hardware look great. Do you think Angry Birds would be
one of the most popular games of all time if they didn’t have cute birds and pigs?
What if they decided to save time and money by using white rectangles? No, that
obviously wouldn’t have worked. When it comes to getting graphics for your
game, you have a few options available to you:

• Do it yourself: Create the graphics on your own—and this chapter is here to
help! I usually always try to create my own graphics before trying anything
else. If it is more complicated than my skill level, I’ll pick one of the below
options. The more you try to do your own graphics, the better you will get at
it.

• Buy it: You can purchase stock photos and illustrations from websites like
www.istockphoto.com or www.shutterstock.com. This option won’t cost as
much as paying someone to create the graphics from scratch and you may
be able to find something close to what you need. I’ve used this approach on
numerous occasions and will typically do a few tweaks to make the artwork
more unique. And by that I mean adjust the shape and colors where possible
or combine it with other pieces of artwork. There are many times when you
will find portions of different pieces of art that can be combined together. It
isn’t difficult to layer multiple pieces together to create the artwork you had in
mind.

• Pay someone: This will probably take the most time and also cost the most.
If you go this route be sure to specify before any work is done that you want
the original files so you can make changes if needed down the road. It is al-
ways easier to make small modifications yourself. For example, resizing an

 89

image, adding transparency, or exporting to different image formats is some-
thing that is very typical and you should be able to handle it. Working with
a graphic designer can also consume a lot of time, so make sure that if you
have deadlines that the designer is well aware of this up front and is able to
commit to your timeline. A lot of times you end up going back and forth on
the design and if you are being charged by the hour then the costs could get
pretty high. I always try to nail down a basic design first before any work has
started.
Another option that works well for logos and icons is to hold a graphics con-
test. At the website http://gfxcontests.com/ you can create a contest describing
what type of graphic you’re looking for and multiple designers will compete
for your specified prize money (typically $100). I’ve seen this approach used
before and it worked great. It allows you to provide feedback to the designers
while the contest is underway so they can rework their designs to better fit
your needs. It can be a lot of fun and when the contest is over you get to pick
the winning entry.
Another option you could try is contacting a local college and look for stu-
dents that are learning graphics design. Someone there would love to get the
exposure and credit of having their work featured in an iPhone game. This
way you can get yourself graphics on the cheap and also help a student out by
building their portfolio and even promoting their name and website in the
credits of your game.

This chapter will show how you can create your own game graphics so you can
save time and money. You are going to create a game of Air Hockey, so you’ll
need to create a puck, two paddles, and an air hockey table to play on. You also
need artwork for the application icon that is displayed in both the App Store and
on the device after installation.

Introduction
There are lots of tools you can use to create graphics, including free tools such as
the open source Gimp program (www.gimp.org) and Inkscape (http://inkscape.
org/). There are also paid tools such as one of Adobe’s (www.adobe.com) many
products: Illustrator, Fireworks, and Photoshop. I have found that the Adobe

Chapter 3: Touch and go90

products are what most graphic designers use and prefer, which may be enough
of a reason to go ahead and purchase. This way if you ever need to hire out for
graphics, you will be able to keep and edit their work using the same file format.

One of my favorite programs that I use to create graphics is Adobe Fireworks.
It combines a lot of the features of Adobe Photoshop and Adobe Illustrator into
what I find to be a simpler interface. I’ll start the lesson using this program. Even
though it’s not free, you can still download a full-functioning trial version from
the Adobe website to see if you like the product. If you already have another pro-
gram you want to use then you might still be able to follow along, as most draw-
ing programs have similar features and concepts.

bitmaps and Vectors
Adobe Fireworks supports editing both vector and bitmap graphic formats. It is
important to know the differences between both formats. For our purposes, you
will find the bitmap format to be much more limiting than the vector format. So
what is the difference?

Bitmap graphics are composed of pixels arranged in a grid. Each pixel in a bitmap
can be assigned a unique color. The iPhone screen is just a rectangular grid of
pixels. All of the game images you will use in the air hockey game will be bitmaps.
However, during the editing process it is much preferred to use vectors.

So what is a vector? It is basically a math equation used to describe a shape.
Because it is an equation, it can be scaled to any size without loss in resolution.
This is the biggest difference between vectors and bitmaps. If you looked at a bit-
map and a vector side by side at the same resolution of the same shape then you
wouldn’t be able to tell the difference. However, if you were to scale the images,
especially if you make them larger, then the difference becomes very apparent.
In order to illustrate this, I created a small circle on a canvas of size 16×16 pixels
and saved it as a bitmap and a vector. I then scaled both images up to a size of
512×512, as shown in Figure 3-1. You should quickly notice that the bitmap on
the left has become very blurry when scaled up, while the vector on the right has
maintained its perfect shape.

bitmaps and Vectors 91

figure 3-1. Scaling bitmaps and vector graphics

At the end of the day, you will always use bitmap images in your iPhone applica-
tions, but that doesn’t mean you should keep the artwork files as bitmaps. It is
very easy to export from a vector format into a bitmap format. But once you are
in a bitmap format, you can’t go back into a vector format without recreating the
shapes. Therefore, it is always best to keep and edit your artwork as vectors and
scale and export as needed.

When I first started creating games, I created all my artwork as bitmaps, think-
ing I would never need to go back and modify them. I didn’t know that the iPad
would be coming out and I didn’t know that the iPhone would eventually get a
Retina display either. I couldn’t just scale up my bitmaps, as it would not add any
additional detail. So in order to support these devices and their higher resolutions
I had to recreate my artwork. This was painful because I had already designed it
and now I had to recreate what I already did but at a higher resolution. Nobody
likes having to throw away or recreate their work, especially me. If I would have
stored my work as vector graphics, then when it came time to update and resize
my images it would have been extremely simple. Just remember that it is always
best practice to keep your artwork in a format that can scale in case you need to
support different resolutions down the road.

Another reason that I didn’t start with a vector-based editor was because I already
had Adobe Photoshop installed on my computer. I wanted to get my game out the

Chapter 3: Touch and go92

door as quick as possible and didn’t want to spend extra time learning something
new. It was just easier to use the software that I already had installed, but that
kind of thinking isn’t the best long-term strategy. I now always create images us-
ing a vector-based editor like Adobe Illustrator or Fireworks. However, you may
find yourself in a situation where you want to use real photos, and if that case
then I recommend always purchasing or creating the artwork at a much larger
size than you need. You can always scale the images down if needed and bitmaps
always scale down better than they scale up.

Image formats
It is important to know a little about the different image formats that you can use
in an iPhone application. Some image formats support transparency which are
portions of the bitmap that are not drawn. Transparency is supported in the PNG
format. Some image formats do not allow for transparency, such as the popular
JPEG format. JPEG works better for photographs and PNG works better for il-
lustrations, sprites, and basically everything other than photographs. You are
probably always going to use the PNG format for your iPhone game, as it is the
preferred format on the iOS platform. It is accelerated by the platform, which
makes it the quickest to draw. Speed is always an important factor. But sometimes
the size of your application can be an important factor.

JPEG is really good at reducing the file size of photographs and will typically be
much smaller than the PNG image format. I have used the JPEG format when I
needed to get an application under a certain size. Applications currently can only
be downloaded over the cellular network if they are under 20 megabytes in size.
If apps are larger than this, they have to download over a WiFi connection. This
usually isn’t that big of a deal but if you find your application sits just barely over
the 20 megabyte limit, you might convert some of your larger image files into
JPEG. This can only be done for images that do not have transparency, such as
full screen background images.

JPEG also is a lossy format which means it can lose detail from the original im-
age. If you open, modify, and save JPEG images over and over, then each time it
is saved, the image would lose a little more detail and quality. There are usually
settings that can be adjusted as to how much quality the JPEG image will keep,

Image formats 93

which affects the overall file size. PNG is completely different in that it is a non-
lossy format. This means the image will always be the same quality no matter how
many times it is modified.

retina display
Apple released the iPhone 4 in June of 2010 and with it came a brand new display
technology. The screen was the same 3.5 inch size as previous generations but
they managed to quadruple the number of pixels used on the screen. The previ-
ous iPhone had a 320×480 display at 163 ppi (pixels per inch). The iPhone 4 has
a 960×640 display at 326 ppi. Apple calls the technology “Retina display” because
they claim the display has higher detail than the human eye can perceive. There
has been a lot of discussion whether that statement was marketing fluff or not, but
at the end of the day no one can deny the display looks amazing, especially when
comparing it to older devices. Regardless of how Apple marketed their new display,
it was very clear why they went this route and it was really App Store focused.

Table 3-1. ioS device screen sizes
device Portrait landscape Pixels per inch

iPhone 4,
iPhone 4S, and
iPod touch 4th
Generation

640×960 pixels 960×640 pixels 326 ppi

iPad and iPad 2 768×1024 pixels 1024×768 pixels 132 ppi

Older iPhone
and iPod touch
devices

320×480 pixels 480×320 pixels 163 ppi

At the time iPhone 4 was launched there were already over 200,000 applications
in the App Store. Apple didn’t want their App Store to become fragmented by a
new display resolution. They definitely wanted to make sure existing applications
would run perfectly without modification. It would have been impossible to have
developers update all their applications to support a completely different resolu-
tion between the time the iPhone 4 was announced to the time it was officially

Chapter 3: Touch and go94

launched. The solution Apple came up with was simple, if you want to support
the Retina display then update your app, but if you don’t want to bother then iOS
will just scale your application to twice the size when your app runs. The pixels
displayed in your application would effectively be doubled so that it would fill the
entire screen and the application didn’t even need to know about it.

Apple decided the easiest design approach would be to change the units of the
screen from 320×480 pixels to 320×480 points. The difference being that on
high resolution displays like the iPhone 4 there would be two pixels per point.
On previous devices there would be a one-to-one relationship between pixels
and points. Keeping the dimensions the same ensured compatibly of all the ap-
plications that already existed in the App Store. Even though Apple encouraged
developers not to hard code screen sizes most of us did anyway. Instead of check-
ing the UIScreen object for the width and height of the window or querying the
UIWindow for the frame size, developers just went on their happy way assuming
the width and height would never change. Source code was littered with hard
coded positions and sizes so this was another motivation for Apple to keep the
width and height the same exact numbers.

It’s great that Apple maintained backwards compatibility for apps, but now the
question is how do you take advantage of this high resolution display? Apple
came up with a very simple way to support the higher resolution screens: just
add an additional image at twice the size and the system will use it when the app
runs on high resolution devices. If you had an image that was 40×40 then all you
need to do is include another image at 80×80. If you had a full screen image at
320×480, then just include another one at 640×960. Apple modified the platform
to check for the existence of higher resolution images using a simple filename
convention (see Table 3-2).

Table 3-2. Image name formats
Standard resolution
image

<ImageName><device_modifier>.<filename_extension>

High resolution
image

<ImageName>@2x<device_modifier>.<filename_
extension>

retina display 95

The <ImageName> and <filename_extension> are the typical ways that you
name an image file. The <device_modifier> portion is optional but will contain
either ~ipad or ~iphone. This allows for providing different versions of the same
image for the iPhone and iPad, which becomes important if you are creating a
universal application (one app that runs on both devices). The inclusion of the
@2x modifier specifies an image at twice the resolution over the standard size.

At the time of this writing, the iPad and iPad 2 do not have a high resolu-
tion display. however, with the inclusion of @2x and the device modifier,
the platform supports both iPhone/iPad and standard/high resolution
images in a single universal application.

For example, if you created an image named Title.png that was 320×480 in size,
then you could create another image named Title@2x.png that is twice the resolu-
tion or 640×960 in size. If you included both images in the same location of your
application bundle, anytime the application loaded Title.png on a high resolution
device, it would check for the existence of Title@2x.png and use that version if
available. Standard resolution devices continue to use the original image file. If
the high resolution image is not available then the original image is just scaled up.
All this logic is done for you within iOS, which makes it easy to support Retina
display and usually without having to write any additional code.

In the following section, you will create two versions of each image to support
both standard and high resolution graphics. You will also create a series of game
icons for display in iTunes and your application.

Creating Images for an Air hockey game
You will now spend time creating the images needed for the air hockey game. I
did the following work using Adobe Fireworks for the PC. If you are running the
Mac version of Fireworks, it will look almost identical. And if you’re not using
Fireworks then hopefully you can still follow along, as these concepts should be
similar across other image editors.

Chapter 3: Touch and go96

Making the Puck Image
The first thing you will create is a puck, which just so happens to be the easiest of
the three images you need to create. Launch Fireworks and create a new image of
size 512×512 and make sure the background is transparent, as shown in Figure
3-2. You need to use transparency because the puck will be circular and in the
game you want the air hockey table to be visible in the areas that are outside of
the puck circle.

figure 3-2. Adobe fireworks

Make sure the Tool pane is available, which is usually displayed on the left
side of the window. If you do not see this pane in the main window then select
Window→Tools from the menu. Inside the Tool pane there are different groups
of tools. Find the Ellipse tool under the Vector group and select it. This tool is

Creating Images for an Air hockey game 97

shared by the Rectangle, Ellipse, and Polygon tools so you may need to hold
down the mouse button on the button to change it to the Ellipse shape. You can
also press the U key to toggle between Polygon, Ellipse, and the Rectangle shape
tool.

Draw an ellipse of any size on the canvas and then, in the Properties pane at the
bottom of the screen, change the width to 512, height to 512, X to 0, and Y to 0.
You now have a perfectly centered circle that takes up the entire canvas. Change
the Fill category to Gradient/Ellipse, which will fill the circle with a two-color
gradient. Click on the fill color and set the Preset to “White, Black”—which will
fade from solid black at the edge of the circle to solid white in the middle of the
circle. Although this gives you a gradient that is pretty close to what you want,
the white is too bright and needs to be set to a darker color. Click on the fill color
box, which will bring up a pop-up that lets you specify the two colors to use in
the gradient. There are two small boxes below the gradient bar that allow you to
change the specific colors. Click on the box located on the left side of the gradient
bar. A new color palette view will appear that lets you select the new color. You
can use the eyedropper tool to pick up a color or you can type in a specific hexa-
decimal color code.

hexadecimal color codes specify 3 colors: rgb (red, green, blue), with
each color represented by two hexadecimal digits (0-f). The color is spec-
ified in the format #RRGGBB where R is red, G is green, and B is blue. each
color component value is specified between 00 and FF with 00 being
the darkest intensity and FF being the brightest intensity. All the compo-
nents get combined to create the final color.

Change the hexadecimal value from #FFFFFF, which represents the color white,
to #A0A0A0, which lowers the intensity to a light gray color. Now change the end-
ing gradient color by clicking on the box located on the right side of the gradient.
Change the value from #000000 to #333333, which will change the ending gra-
dient color from black to a darker gray. The gradient now starts with a light gray
color and fades into a darker gray color, as shown in Figure 3-3.

Chapter 3: Touch and go98

figure 3-3. Picking a gradient

Now lets add a stroke line to the puck, which will use a brush to draw an outline
around the puck. Click the stroke color and specify #999999, which results in a gray
that falls between the gradient you just specified. Change the stroke line width to 32
pixels and change the Stroke category to Soft Rounded line. Change the Edge to be 8
pixels and leave the location of stroke relative to path set to centered. You will notice
that the stroke line is now being drawn off the canvas. If you were to export this image
now, it would have the top, left, right, and bottom edges of the circle clipped off, which
is not what you want. A little trick that you will use to fix this is the Fit Canvas opera-
tion. This operation can be found in the Modify→Canvas menu or in the properties
of the canvas itself. Just click outside of the puck object but on the canvas and that will
bring up the canvas properties. Click on the Fit Canvas button and the canvas will
now adjust so that it contains the entire puck. This is a very handy operation and you
will be using it a lot so the image isn’t accidentally clipped.

Creating Images for an Air hockey game 99

Now you will put the final touches on the puck by adding a drop shadow to it.
This will give the puck a little bit of depth so it doesn’t look so flat. Click on the
Filters add button (which has a plus icon on it). Open the Shadow and Glow
pop-up and select Drop Shadow. Modify the distance to 16, transparency to 65%,
Softness to 8, and Angle to 315. You will notice that the drop shadow is getting
clipped by the canvas again. Just as you did before, you want to click on the Fit
Canvas button from the canvas properties. The image has grown in dimensions
because of the stroke line and drop shadow (see Figure 3-4). But there is no need
to worry about the size too much because everything you just did is stored as a
vector, which means you can scale it to any size without issue.

figure 3-4. The puck image

Chapter 3: Touch and go100

The puck is looking good, so now is a good time to save your work by clicking
File→Save from the menu. Find a suitable location to save your work, such as your
Desktop or in your Documents folder. I usually store all my artwork under a new
folder with the same name as my Xcode project. In this case, I created a folder
named “AirHockey” under my Documents folder and saved all the artwork there.
If I ever need to update the application’s artwork, I’ll know exactly where I kept
the original artwork. It really does help to keep everything organized and under
a single folder based on the application name. Name the file fireworks_puck.png
and click Save. Now you might be thinking this is just a regular PNG image file
that you just saved, but it actually contains more than just an image.

Fireworks adds extra data to the PNG file that other applications can’t read, such
as information on vectors and effects. Other applications such as your browser
or another bitmap editor will read the PNG file as a standard bitmap image.
However, when you open this file in Fireworks, it will use that extra information
to bring back your vector and layer information. So the Fireworks PNG file is re-
ally more than just a bitmap image, and although this PNG file would render fine
in the iPhone game, you really don’t want to use the Fireworks version because it
will increase the overall application size. And you don’t want the application size
to be bigger than it needs to be right? Right.

You need to export the image to a new PNG file that does not have this extra
information. Click File→Image Preview… from the main menu and under the
Options tab change the format to PNG 32. This gives you an image file with
transparency and uses 8 bits for each color channel (red, green, blue). It also in-
cludes 8 bits for the alpha channel, which specifies the level of transparency of
each pixel. This format is also known as RGBA, and because each channel is 8 bits
that gives you a total of 32, which is why Fireworks calls it PNG 32. Selecting the
PNG 24 format takes away the alpha channel leaving only red, green, and blue for
a total of 24 bits. This creates a slightly smaller file, and if your image is not using
transparency then this format would be acceptable.

Click the File tab and Scale the image to 40×40 pixels. Click the Export button
and name the file puck.png. This is the image you will load for the puck in the
iPhone game. You might notice the image file is much smaller than that of the
fireworks_puck.png file you already saved. This is because you decreased the

Creating Images for an Air hockey game 101

image size, which in turn reduces the number of pixels needed in the bitmap. You
also removed the extra information that Fireworks stores in the PNG file when
you export. This is a true bitmap file without any extra stuff and it is sized down
to the dimensions you need it to be in the game.

The Image Preview screen supports scaling the image to not only smaller
but also larger sizes. however, you should never scale images up, as it
performs the resize as if it were a bitmap. The vector information is not
used during the resize operation, which will produce less quality than
actually resizing the vector first and then exporting to bitmap. you can
easily see this by taking a smaller vector-based image and exporting it to
a much larger size. The final result would be very blurry. resizing bitmaps
to smaller sizes will always yield much better results.

You also want to export another version of the puck image for high resolution
Retina displays. Use the Image Preview again to export the puck at 80×80 but this
time name the file puck@2x.png. This leaves you with a standard resolution image
named puck.png of size 40×40 and a high resolution image named puck@2x.png
of size 80×80. You will be doing this for all images you create.

Making the Paddle Image
Now that the puck is finished, turn your attention to creating the air hockey
paddle. The paddle is actually very similar to the puck except that it will be red
and have a handle that allows one to grab and move it across the table. Take the
fireworks_puck.png file, which should still be open, and save it to a new file named
fireworks_paddle.png. Notice I am adding “fireworks_” to all the files that include
the extra Fireworks data. This allows me to easily find the Fireworks image files if
changes ever need to be made. You would never want to start with editing an ex-
ported image because it does not include the vector and style information.

The first thing you want to do is change the colors to red. Click the puck object to
view properties of the object and then change the fill color. Click on the left color
box under the gradient to adjust the starting color. Select the brightest red color
from the color spectrum or type #FF0000 into the hexadecimal field. Now click

Chapter 3: Touch and go102

on the ending gradient color and type #330000 into the hexadecimal field. This
leaves you with a nice red gradient starting with bright red in the center and fad-
ing to a darker red near the edges.

Click on the stroke color and change that from a gray color to a red color by spec-
ifying #D90000 as the hexadecimal color value. Change the stroke width to 40
pixels and the stroke style to Soft Line. Adjust the edge value to be 20. As shown
in Figure 3-5, this creates a good base for the paddle. Now you need to create the
handle.

figure 3-5. Paddle base

Create a new circle by selecting the Ellipse tool again and drawing a circle that
is smaller than the base circle. You will notice that the new circle appears in its

Creating Images for an Air hockey game 103

own layer in the Layers panel. If you ever need to select this object you can use
the Layer pane to select exactly the object you want. This becomes even more
important when you have lots of objects within your image. With the new handle
selected, use the Properties panel to change the size to 256×256. Switch over to
the Pointer tool and make sure the layer containing the smaller circle has been se-
lected. Because of the drop shadow, you will notice that the base object is slightly
off center. Drag the handle into the center of the base object, which is slightly up
and to the left from the canvas center. You will see smaller horizontal and vertical
dashed lines appear when it becomes aligned to the base object.

Now you need to remove the stroke line and modify gradient of the handle. Make
sure the smaller circle is selected and then change the stroke color to be transpar-
ent. This will prevent the stroke line from being drawn. Now click on the fill color
so you can adjust the gradient. I want to create a light-glare effect at the top of the
handle, with it fading into bright red, and then slowly fading out the color found
right at the start of the base. This requires creating a three-color gradient from
white, to bright red, to dark red. Move the bright red color box located on the left
side to about three-quarters the way over so it is now on the right side. Then click
in the far left spot where the box used to be to insert a new color. Change the new
color to white, which is #FFFFFF. Now click on the dark red color located on the
far right of the gradient and change the color to #990000.

Let’s give the handle a drop shadow to give the paddle a 3-D look. With the han-
dle selected click on the Add filters button in the properties window. Select the
Shadow and Glow menu and then the Drop Shadow effect. In the drop shadow
pop-up, adjust the distance to 56, opacity to 25%, softness to 16, and keep the
angle set at 315. You might be wondering how I came up with these numbers and
it really is the result of experimentation. I recommend you try adjusting all the
different settings so you can get the feel of how drop shadows work. I think you
will find that adding drop shadows can take a boring flat image and really give it a
sense of depth.

The last touch I want to do is move the white glare of the handle so that it is a
little off center. The way drop shadows are arranged imply that the light source is
coming from the top left of the screen. It makes sense to move the white glare so
that it strikes the paddle handle from the top left as well. If you click on the

Chapter 3: Touch and go104

handle, you will see that the gradient center point, which is located in the center
of the object, can actually be moved. This point determines the starting location
of the gradient. Drag it a few pixels towards the top left of the object, but don’t
go too far so that the gradient would be cut off. As shown in Figure 3-6, your
paddle should appear as though a light source is hitting the top left of the handle
and casting shadows to the bottom right. Even though the paddle was created
using 2-D shapes, using drop shadows and a custom gradient has given it a 3-D
appearance.

figure 3-6. Paddle image

Creating Images for an Air hockey game 105

Now export the image using Preview Image and set the format to PNG 32, sized
to 64×64, and name the file paddle.png. This will be the image used for both
paddles in the game. Export a high resolution version of the paddle by changing
the size from 64×64 to 128×128 and naming it paddle@2x.png. Save and name the
Fireworks file as fireworks_paddle.png and then close the file.

Making the Air hockey Table
The next step is to create a background image that will represent the air hockey
table. Create a new image with a size of 640×960 and set the canvas color to white.
You now have a white surface that represents the top of the air hockey table.

Let’s create an outer wall for the table by selecting the Rectangle tool and drawing
a rectangle on the screen. Modify the properties so the size is the same as the can-
vas, 640×960, and is positioned at 0,0. Change the fill color to transparent, stroke
color to #999999, and stroke tip size to 16. Change the stroke type to be a Hard
Line and change the location of the stroke to be inside the object.

Select the Ellipse tool and create a new circle in the middle of the screen. In the
properties window change the size to 288×288 and position it at 176,336. The fill
color should still be set to transparent and the size set to 16. Change the stroke
style to Soft Rounded and make sure the stroke location is centered. Change the
stroke color to bright blue, which is #0000FF.

Now you need to add two goal boxes to the air hockey table. Create a rectangle on
the screen and modify the size to be 288×288 and set the fill color to white. The
fill color is important because you want to remove the hard wall edge where the
goal boxes will be at the top and bottom. This could be done using a mask on the
wall rectangle but it is even easier to just set the fill color to white so that the walls
are painted over when covered with the goal box. To see what I mean, drag the
goal box up to the top and you will notice that the wall is removed as the white fill
color of the goal box covers it up. Modify the position of the goal box to be 176,
–142. This will put the box half off the screen and half on the screen, which will
create a nice opening in the wall. Copy and paste this object into a new goal box
and move it to the bottom. Change the position of the new goal box to 176, 814.
You now have two goal boxes added with breaks in the wall so the puck can slide
on through.

Chapter 3: Touch and go106

Now you will add a dashed line across the center that will serve as a guide for
telling which side of the table the puck is on. Select the line tool and draw a line
across the center of the screen. Modify the properties to change the size to 640×1
and the position to 2, 480. You should still have the color set to bright blue and
the tip size at 16 pixels. Now change the stroke category to Basic Dash. Open up
the Advanced Properties and change the On variable to 50 and Off to 32. This will
paint the dash with 50 pixels on and 32 pixels off. I played with the numbers until
the dashed line did not intersect the circle and the left and right sides were a mir-
ror image of each other (see Figure 3-7).

figure 3-7. Air hockey table

Creating Images for an Air hockey game 107

Now that you have the air hockey table drawn, you should export it as a high
resolution image by naming it background@2x.png. Make sure the size says it is
640×960 before exporting the image. Now export a standard resolution image
with a size of 320×480 and name it background.png. While you are working with-
in this file you should go ahead and create a title and splash screen.

The background, title, and splash screen will all be very similar to each other so
you don’t need to create new files for each. You can add new layers into the image
and toggle their visibility when needed. Since the title screen will eventually show
a series of menu actions, it will be good to hide the dashed line and circle. In the
Layers pane, you can toggle visibility by clicking on the eye icon located to the left
of each layer item. Click and disable the visibility for both the center circle and
dashed line.

Now click on the Text tool in the Vector group. I picked the font “Impact” of size
96 but you may need to use another font if you do not have it installed on your
system. I changed the fill color to be white and the stroke line color to be blue.
I also changed the stroke tip size to be 3. This will create a nice solid blue line
around the text. Click in the canvas and type “Air Hockey” as the title. Put it near
the top of the screen so you have plenty of space below it to add menu items. The
menu items will come later and will be done using Interface Builder. Now add a
drop shadow as you did before with a distance of 7, transparency of 65%, softness
of 4, and angle of 315. The image should appear similar to Figure 3-8.

Chapter 3: Touch and go108

figure 3-8. Title screen

Bring up the Image Preview screen so you can export this image. Change the
format to PNG 24 since the image is not using transparency. Export the image
as Title.png of size 320×480 and Title@2x.png of size 640×960. Now that the title
screen is done let’s quickly make the splash image. Add a new text item that says
“Loading…” into the center of the screen. Change the font size to 40 and the
stroke color to black. Also change the stroke tip size to 1 pixel. The shadow will
be the same. Drag the label into the center of the screen, using the guides as refer-
ence, so it appears similar to Figure 3-9.

Creating Images for an Air hockey game 109

figure 3-9. Splash Screen

Bring up the Image Preview screen so you can export this image. Keep the format
set to PNG 24 and export the splash screen as Default.png of size 320×480 and
Default@2x.png of size 640×960. Save the Fireworks file as fireworks_background.
png in case you need to make changes to the title or splash screen at a later time.
The title screen will eventually have buttons that when pressed will allow you to
play the game, so you will create that next.

buttons
Interface Builder lets you use standard rounded-rectangle buttons, but they are
very generic looking. It is always best to create your own button images rather
than using the default buttons provided. It will also help keep the look of the
game consistent, making for a better experience. You will create two button imag-
es, one normal, and one hot. The normal image is displayed when it is not being
touched, and the hot image is displayed when the user touches the button. Having
these two images will provide visual feedback that the button is being pressed.

Chapter 3: Touch and go110

Create a new file that is sized to 360×88 pixels and has a transparent background.
Select the Rounded Rect vector tool and then draw one so that it fills most of the
canvas. Leave a little margin around the button. I set the shape to have the origin
at 4,10 and the size set to 352×68. You will notice there are a lot of adjustments
you can make to the rounded rectangle, including the standard size adjustments,
but also the roundness of the corners. In my case, I made the corners as rounded
as they could be so that both ends were semicircles. Grab the inner diamond
controls to adjust the corner roundness. Now that you have a nice button shape,
modify the fill color to be transparent, and the stroke color to be bright blue. Set
the stroke tip size to be 4 pixels and the stroke category to be Soft Line. This will
make for a normal button that is not pressed, as shown in Figure 3-10.

figure 3-10. normal button image

Bring up the Image Preview screen and set the format to PNG 32 so you can
maintain the transparency. Make sure the image is sized to 100% and name it
button@2x.png for the Retina high resolution image. Now size the image to 50%
and name it button@.png for the standard resolution image.

Creating Images for an Air hockey game 111

In the layers view make a duplicate layer, which will be the hot button. Hide the
previous layer by deselecting the eye next to the layer. Change the fill category of
the round rectangle in the new layer to be a Linear Gradient. Change the gradient
to go from bright blue to white. You may need to adjust the position and rotation
of the gradient such that it starts from a blue color at the top of the button and
fades into a white color at the bottom of the button, as shown in Figure 3-11.

figure 3-11. hot-button image

Bring up the Image Preview screen and export the two images, button_hot@2x.png
sized at 100%, and button_hot.png sized at 50% the original size. You have finished
creating the buttons so you can save the Fireworks file as fireworks_buttons.png in
case you need to modify them later.

Chapter 3: Touch and go112

review game Images
You just finished all the in-game artwork so now it is time to double check that ev-
erything you created is correct. Review the list of images in Table 3-3 and verify that
your images are the correct size (if specified) and name. If there are any images that
are not correct, open up the associated Fireworks file and export them again.

Table 3-3. Air hockey images
filename description

fireworks_puck.png Fireworks puck image with vector information.
This file is the one used for editing.

puck.png Puck image with size of 40×40.
puck@2x.png High resolution puck image with size of 80×80.
fireworks_paddle.png Fireworks paddle image with vector information.

This file is the one used for editing.
paddle.png Paddle image with size of 64×64.
paddle@2x.png High resolution paddle image with size of

128×128.
fireworks_background.png Fireworks air hockey background image with vec-

tor information. Includes splash and title screens.
This file is the one used for editing.

background.png Air hockey background image with size of
320×480.

background@2x.png High resolution version of background.png with
size of 640×960.

title.png Air hockey background image without dashed
line and circle. Size is 320×480.

title@2x.png High resolution title image of size 640×960.
Default.png Splash screen that displays while the app is load-

ing and is 320×480 in size.
Default@2x.png High resolution splash screen image with size of

640×960.
fireworks_buttons.png Fireworks file containing button graphics. This

file is the one used for editing.

Creating Images for an Air hockey game 113

button.png Normal button image with size of 180×44.
button@2x.png High resolution normal button image with size of

360×88.
button_hot.png Hot-button image with size of 180×44.
button_hot@2x.png High resolution hot-button image with size

360×88.

That was a lot of work and I wish I could say you were done at this point. But you
just have one more thing to do: create the application icon.

Application Icon
An application icon is needed for both iTunes and the application itself. The icon
is very important because it is usually the first thing people will see in the App
Store. Many times people will just make a judgment call based on only the ap-
plication name and the icon. Therefore, the icon should convey what your game is
about and hopefully pull in people wanting more information, such as the appli-
cation description, screenshots, and customer reviews. I typically wait until all the
in-game artwork has been created before creating the application icon because
you can usually reuse a lot of it. This is exactly what I’m going to do to create an
icon.

Create a new image in Fireworks with a white background of size 512×512. Drag
the fireworks_paddle.png file onto the canvas. You will notice the vector objects
get imported into the image. Now let’s shrink the size of the paddle so it fits into
the bottom left corner. You will use free transform to resize the object. Make
sure that both layers of the paddle are selected. Click Modify→Transform→Free
Transform from the menu or press Control-T. A square outline appears around
both circles and you can grab any of the corners to resize. Grab the top right cor-
ner and shrink it down until the width and height is about 288×288. Move the
paddle so that it is located in the bottom left corner with a little margin.

Now drag the fireworks_puck.png file onto the canvas and with the layer selected
use the free transform tool again. Grab the bottom left edge and resize it until it
is around 180×180. The sizes don’t need to be exact, just close enough. The icon
should appear as shown in Figure 3-12.

Chapter 3: Touch and go114

figure 3-12. Air hockey icon

Go ahead and save your work as fireworks_icon.png. If you ever need to update
the application icon, this is the file you will use. The application icon is now com-
plete and you need to export it into a lot of different sizes. iTunes now requires an
icon that is sized 512×512: when the original iPhone was released you only need-
ed an application icon sized at 57×57. Now with the new high resolution display
on the iPhone and the iPad screen size there are a lot more sizes that you should
include in the application bundle. Use the data shown in Table 3-4 and export the
icon to all of these dimensions with the specified filename.

Creating Images for an Air hockey game 115

Table 3-4. Application icons
filename Size description

Icon.png 57×57 Standard resolution iPhone icon required for
iPhone or universal applications.

Icon@2x.png 114×114 High resolution iPhone icon used on iPhone
4 and iPod touch 4th generation devices. Not
required for an iPad-specific application.
Optional but strongly encouraged if building
iPhone or universal applications.

Icon-72.png 72×72 iPad icon that is required if building a uni-
versal or iPad-specific application.

iTunesArtwork 512×512 Image used in iTunes, but it can also be in-
cluded in the application. It does not include
the PNG file extension when it is included
with the application. Fireworks will always
save the image with the PNG extension so
you need to rename the file from outside
of the Fireworks application to remove the
extension.

Icon-Small.png 29×29 This icon is optional and appears in Spotlight
when displaying application search results.

Icon-Small@2x.png 58×58 High resolution icon used in search results.
Icon-Small-50.png 50×50 iPad icon used in search results.

Congratulations, you have finished all your graphics work and now can move on
to integrating them into a new game of air hockey.

Application Integration
You will start a new project from the existing Paddles application, drop in the im-
ages that were just created, and then get everything plugged into Interface Builder.
This will be the fastest way to get the Air Hockey game up and running, as you will
be able to reuse a lot of the code that was already written for the Paddles game.

Chapter 3: Touch and go116

Project Creation
In order to copy the existing paddles game into a new project, I suggest using
Finder and locate the existing Paddles project. If you already have it open in
Xcode, you can Control-click on the project file and select Show in Finder from
the pop-up. Go up to the parent folder so the entire Paddles folder is selected
which contains the Paddles.xcodeproj file. Select File→Duplicate from the main
menu to create a “Paddles copy” folder. Rename this folder to “AirHockey” and
then open the Paddles project in this new folder.

In Xcode, make sure the Paddles project file is selected in the project navigator.
Single-click on the Paddles project name; this will allow you to rename it. You can
also do this from the File Inspector in the Utility pane. Change the name from
Paddles to AirHockey. You will be prompted with all the items that will be re-
named. Click the Rename button to accept, as shown in Figure 3-13.

figure 3-13. Xcode project rename

Application Integration 117

you may get prompted by Xcode to take automatic snapshots before
project renaming and similar operations. This will allow you to roll back
to a specific snapshot when major operations are done to the project. I
recommend that you enable this feature. you can access and restore your
snapshots from the organizer under the Projects tab.

Now you have a new project you can work with. If you run the application, you
will notice that the name of the application has changed to AirHockey. Go ahead
and drag all of the graphics you exported from Fireworks into the project. When
prompted, specify that you want to copy the images into the project. The project
listing should now appear as shown in Figure 3-14. Now that the images are includ-
ed in the application bundle, you can access them using Interface Builder.

Interface builder and Images
You will now take various images and drag them into Interface Builder. Open
up the PaddlesViewController.xib file and make sure the Utility pane is visible on
the right side. Now switch over to the Media Library, which is next to the Object
Library that you have already used. You will see all of the images listed that were
just added to the project.

Before you integrate the artwork, delete the previous game pieces that were cre-
ated as normal views with a white background. You want to remove everything
except the root view and the two score labels, so remove the paddles, the puck,
and the middle line view. You can do this by highlighting the objects in Interface
Builder and pressing the Delete key.

Now drag the background.png image from the Media Library over into the edi-
tor. Make sure you do not drag the background@2x.png image or any of the
other Retina images over. You only work with the standard resolution images in
Interface Builder, as the high resolution images are loaded by the system automat-
ically when needed. Notice that a UIImageView object is created with the correct
size of the image already specified. Using the Media Library is more convenient
than dragging over a UIImageView from the Object Library, specifying the file-
name, and then setting the correct size dimensions. In the Object hierarchy pane,

Chapter 3: Touch and go118

you need to move the background image view to the top of the list so the score
labels will be visible again. Finally, select the score labels and change the text color
to black so you can see them against the white background.

figure 3-14. Images added into the project

Application Integration 119

Now drag over the puck and place it into the center of the background. Drag
two paddle images over and arrange them between the goal box and the middle
circle, as shown in Figure 3-15. In the view hierarchy, verify that the order is
background image, score labels, puck, and paddles. This is important so the puck
slides over the scores as if they are embedded in the table, and the paddles are
drawn on top of the puck if there is ever a collision. Now that all the pieces are
laid out and correctly ordered, you can plug the existing view objects into the
view controller.

figure 3-15. Interface builder and air hockey objects

Bring up the secondary assistant so the PaddlesViewController.h file is displayed
next to Interface Builder. Control-click on the top paddle and connect it over
to the existing viewPaddle1 property definition, as seen in Figure 3-16. Do the
same so the puck is connected to the viewPuck property and the bottom paddle
is connected to the viewPaddle2 property. The score labels should still be con-
nected to viewScore1 and viewScore2. Now that you have connected all the
objects, the game should function as it did before—but now with shiny new
graphics.

Chapter 3: Touch and go120

figure 3-16. Connecting objects to existing properties

build and run
Build and run the game in the Simulator. You will notice that the animation and
collision still works even with the different sizes of the new images. Of course,
this is not the game you are going for, but at least it has the look you want. When
you run the application, make sure the following things work:

1. The icon is now displayed in the Simulator.

2. Splash screen is displayed when the app is loading.

3. Background, scores, puck, and paddles are all displayed.

4. Switching to the iPhone 4 Simulator shows Retina display graphics. This can be
done from the Simulator menu by selecting Hardware→Device→iPhone (Retina).

The graphics displayed in the Retina iPhone Simulator should be the @2x images you
created. If not, you should verify that those images were dragged into the project file.

The Paddles game has just been given a face-lift and everything still functions as
it did before. In the next chapter, you will spend time improving the paddle logic
and puck physics.

build and run 121

Chapter 4: Physics122

4
Physics

In this chapter, you will modify the game logic to improve the paddle controls
and create a realistic puck animation. The paddle control logic should be allowed
to slide, not only in the X direction, but also in the Y direction. Both paddles
should move freely along the y-axis up to the middle line on their side of the
screen. The puck should glide along the table with a little table friction so that
it slows down after being hit. The collision detection logic needs to work with
circular objects, as well as the walls that surround the table. The score logic will
also need to be modified to only trigger when the puck enters the goal boxes
located in the middle of each back wall.

Paddle Physics
You will start by modifying the game logic of the paddles so they can be controlled
in both the horizontal and vertical directions. You also want the paddles to be
animated into new positions on the screen so they don’t instantly appear wherever
you touch. That worked fine for the Paddles game but in the case of air hockey, the
speed of the paddle should be tracked in order to animate realistic collisions with
the puck. You will create a new class that will help manage the logic and state of
the paddles. In an effort to reuse code, you will wrap all the paddle logic into a new
Paddle class. This object will be used to manage and control both of the paddles.

Create a new object by selecting File→New→New File... from the menu or by
Control-clicking in the Project Navigator and selecting New File... from the
pop-up menu. Select the iOS/Cocoa Touch template, choose the Objective-C
class, and click Next. Name the new object “Paddle,” make sure the Subclass
is set to NSObject, and then click Next again. Now you can specify the location
where you want to save this new file. Verify the location you are saving is the
same location as all the other files inside the Paddles folder, make sure the Group

Paddle Physics 123

is set to the same folder where the source code files are located in the Project
Navigator and then click Create.

Open the Paddle.h interface file and modify the contents of the file to appear as
follows:

#import <Foundation/Foundation.h>

@interface Paddle : NSObject
{
 UIView *view; // paddle view with current position
 CGRect boundary; // confined boundary
 CGPoint pos; // position paddle is moving to
 float maxSpeed; // maximum speed
 float speed; // current speed
 UITouch *touch; // touch assigned to this paddle
}

@property (assign) UITouch *touch;
@property (readonly) float speed;
@property (assign) float maxSpeed;

// initialize object
-(id) initWithView: (UIView*) paddle Boundary: (CGRect) rect
 MaxSpeed: (float) max;

// reset position to middle of boundary
-(void) reset;

// set where the paddle should move to
-(void) move: (CGPoint) pt;

// center point of paddle
-(CGPoint) center;

// check if the paddle intersects with the rectangle
-(bool) intersects: (CGRect) rect;

// get distance between current paddle position and point
-(float) distance: (CGPoint) pt;

Chapter 4: Physics124

// animate puck view to next position without exceeding max speed
-(void) animate;

@end

Notice that you are tracking a lot more things about the paddle than just position.
You have to initialize the paddle with the image view that represents the paddle
image and a boundary rectangle and maximum speed that limits the paddle
movement. The image view will be configured to either be viewPaddle1 or
viewPaddle2, which have already been set up in Interface Builder. The boundary
rectangle will limit movement of the paddle to a specific rectangle. This will be a
rectangle at the top half of the screen for player one or at the bottom of the screen
for player two. Attempts to move outside of this rectangle will be stopped at the
edge. This object will also move the paddle to the touch point instead of having it
instantly appear where the player touches. The maximum speed lets you specify
how far the paddle can move in a single frame of animation.

Open the paddle implementation file and add in the following @synthesize
declarations for the Paddle properties, along with the initWithView and
dealloc methods. This code should be placed inside the class definition,
which is between the @implementation and @end compiler directives:

@synthesize touch;
@synthesize speed;
@synthesize maxSpeed;

-(id) initWithView: (UIView*) paddle Boundary: (CGRect) rect
MaxSpeed: (float) max
{
 self = [super init];

 if (self)
 {
 // Custom initialization
 view = paddle;
 boundary = rect;
 maxSpeed = max;
 }

Paddle Physics 125

 return self;
}

- (void)dealloc
{
 [super dealloc];
}

The initWithView method stores a reference to the UIView paddle image,
CGRect for the boundary, and the maximum speed. The image view and bound-
ary cannot be changed once initialized. However, the maximum speed is imple-
mented as a property that can be assigned at any time. Although you won’t be
changing the speed of the paddle yet, this will become a useful feature when
implementing computer players.

Add the following code to the implementation file, which will handle resetting
the paddle position and setting where the paddle should move:

// reset to starting position
-(void) reset
{
 pos.x = boundary.origin.x + boundary.size.width / 2;
 pos.y = boundary.origin.y + boundary.size.height / 2;
 view.center = pos;
}

// set where paddle will be moving to
-(void) move: (CGPoint) pt
{
 // adjust x position to stay within box
 if (pt.x < boundary.origin.x)
 {
 pt.x = boundary.origin.x;
 }
 else if (pt.x > boundary.origin.x + boundary.size.width)
 {
 pt.x = boundary.origin.x + boundary.size.width;
 }

Chapter 4: Physics126

 // adjust y position to stay within box
 if (pt.y < boundary.origin.y)
 {
 pt.y = boundary.origin.y;
 }
 else if (pt.y > boundary.origin.y + boundary.size.height)
 {
 pt.y = boundary.origin.y + boundary.size.height;
 }

 // update the position
 pos = pt;
}

Notice the reset method will place the paddle in the center of the defined bound-
ary. This will be useful for when the round needs to be reset and the paddle object
placed back into the center position. The position of the image view is also imme-
diately updated to the new location. This is the only time the paddle will instantly
appear in a new position. The move method also caps the position the paddle
should move to so that it doesn’t fall outside the boundary rectangle.

Add the following code, which provides a method to get the center point of the
image view, a method to check for intersection of a specified rectangle, and a
distance method:

// center point of paddle
-(CGPoint) center
{
 return view.center;
}

// check if the paddle intersects with the rectangle
-(bool) intersects: (CGRect) rect
{
 return CGRectIntersectsRect(view.frame, rect);
}

// get distance between current paddle position and point
-(float) distance: (CGPoint) pt
{

Paddle Physics 127

 float diffx = (view.center.x) - (pt.x);
 float diffy = (view.center.y) - (pt.y);
 return sqrt(diffx*diffx + diffy*diffy);
}

The distance formula is a standard calculation between two points and is often
used in games. You will use this calculation for a couple things. First, you will use
it to calculate how far the paddle is from the point it should move to. This will let
you know if movement should be limited to the specified maximum speed for a
single frame of animation. Second, you will use this method to determine if the
paddle and puck object collide.

Finally, add the following code, which will animate the puck into its new position:

// animate to moveto position without exceeding max speed
-(void) animate
{
 // check if movement is needed
 if (CGPointEqualToPoint(view.center,pos) == false)
 {
 // calculate distance we need to move
 float d = [self distance: pos];

 // check the maximum distance paddle is allowed to move
 if (d > maxSpeed)
 {
 // modify the position to the max allowed
 float r = atan2(pos.y - view.center.y,
 pos.x - view.center.x);
 float x = view.center.x + cos(r) * (maxSpeed);
 float y = view.center.y + sin(r) * (maxSpeed);
 view.center = CGPointMake(x,y);
 speed = maxSpeed;
 }
 else
 {
 // set position of paddle as it does not exceed
 // maximum speed
 view.center = pos;
 speed = d;

Chapter 4: Physics128

 }
 }
 else
 {
 // not moving
 speed = 0;
 }
}

The animate function does the bulk of the paddle logic. The first thing it checks
is if it needs to do any work by comparing the position of the paddle view to the
position it needs to move to. If they are equal then the paddle does not need to be
moved and you just set the calculated speed to zero, which represents no move-
ment. If the paddle does need to be moved, then the distance to that point is
calculated. If that distance does not exceed the maximum speed, then the paddle
view can be set to the new position and the speed is set to the distance moved. If
the paddle exceeds the maximum speed then an interval step needs to be calcu-
lated to move the paddle.

If you ever wondered why you learned trigonometry in school, you now know it
was to animate an air hockey paddle across the screen. The interval step is
calculated using the atan2 function, which calculates the angle in radians
between the current paddle position and the position the paddle is moving to.
You could draw a line from the current position at this calculated angle, and the
position the paddle needs to move to would intersect it. The interval positions
that need to be calculated will also fall on this line, as shown in Figure 4-1, and
each step will have a distance of the maximum speed. The cos and sin functions
can be used to calculate a position from the origin 0,0 at any specified angle. The
position calculated will have a distance of 1 from the origin, which is why you
need to multiply it by the maximum speed so it has the correct distance. This
results in a point that is based around the origin, but you want a position that is
based from the current position. In order to do that, you just need to add the x
and y components of the current position to this new position. This leaves you
with a position that is offset from the current position at the correct angle and
distance. The new position represents how far the paddle should move in a single
frame of animation. The view position is then updated to this new interval
position and the calculated speed is set to the maxSpeed variable.

Paddle Physics 129

x

x

xInterval positions

Angle

Current position

Move To position

figure 4-1. Calculating incremental
steps of paddle movement

You will now plug in the new paddle object so it controls the paddles on the
screen. Add the following to the top of the PaddlesViewController.m implementa-
tion file, which defines a maximum speed and the boundaries for each player’s
paddle:

#define MAX_SPEED 15

struct CGRect gPlayerBox[] =
{ // x, y width, height
 { 40, 40, 320-80, 240-40-32 }, // player 1 box
 { 40, 240+33, 320-80, 240-40-32 } // player 2 box
};

In order to verify that I calculated the boundary rectangles correctly, you can
add some debug code, which will draw them as red boxes on the screen. Add
the following code into viewDidLoad before the newGame method call:

 // debug code to show player boxes
 for (int i = 0; i < 2; ++i)

Chapter 4: Physics130

 {
 UIView *view = [[UIView alloc] initWithFrame:
 gPlayerBox[i]];
 view.backgroundColor = [UIColor redColor];
 view.alpha = 0.25;
 [self.view addSubview: view];
 [view release];
 }

At the top of the PaddlesViewController.h file, you need to import the Paddle.h
file so the paddle objects can be added into the interface. Create two paddle
objects, paddle1 and paddle2, inside the PaddlesViewController interface.
These paddle objects will be responsible for controlling the two paddles. The
paddle1 object will control player one’s paddle, located at the top half of the
screen. The paddle2 object will control player two’s paddle at the bottom half of
the screen. Add the following code into the interface definition:

 // Paddle helpers
 Paddle *paddle1;
 Paddle *paddle2;

You may have noticed that the paddle object included a UITouch property. This
will be used to specify the touch that is currently assigned to the paddle. As such,
you can remove the touch1 and touch2 variables from the interface.

Modify the viewDidLoad method to allocate and initialize the paddle objects.
You will initialize them with the views that represent the paddle images. You will
also set the paddle boundary to be one of the global player boxes that you just
defined. The maximum speed is also specified, which was also defined at the top
of this file. Add the following code after the debug code you just added and before
the call to newGame, as that method will eventually use the paddle objects:

 // create the paddle helpers
 paddle1 = [[Paddle alloc] initWithView: viewPaddle1
 Boundary: gPlayerBox[0]
 MaxSpeed: MAX_SPEED];

 paddle2 = [[Paddle alloc] initWithView: viewPaddle2
 Boundary:gPlayerBox[1]
 MaxSpeed: MAX_SPEED];

Paddle Physics 131

If the view ever gets unloaded then the paddle images would become invalid
which is why it is important to also deallocate the paddle helper objects. Add the
following code into both the viewDidUnload and dealloc functions:

 // free helpers
 [paddle1 release];
 [paddle2 release];

In order to make sure the paddle objects are positioned correctly each time the
round starts, you need to call the reset method for each paddle. This will place both
paddles into the center of their assigned boundary rectangles. You can remove all
the existing puck reset code, as you will address that later. For now, just replace the
entire reset method to be the following:

- (void)reset
{
 // reset paddles
 [paddle1 reset];
 [paddle2 reset];
}

I want to move your attention over to the touch handling logic. The current
implementation moves the paddle images directly to the touch position. This
needs to change so the new paddle objects are in charge of movement. The other
thing you want to do is position the paddle in front of the touch point otherwise
the player’s finger would cover up most of the image. I suggest offsetting the
paddle about 32 points in front of the touch. That means player one’s paddle will
be offset down the screen and player two’s paddle will be offset up the screen. In
addition, you need to store the UITouch object in the paddle object itself instead
of tracking them inside the view controller. Modify the touchesBegan method
to be as follows:

// handle our touch began events
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

Chapter 4: Physics132

 // if paddle not already assigned a specific touch then
 // determine which half of the screen the touch is on
 // and assign it to that specific paddle
 if (paddle1.touch == nil && touchPoint.y < 240)
 {
 touchPoint.y += 32;
 paddle1.touch = touch;
 [paddle1 move: touchPoint];
 }
 else if (paddle2.touch == nil && touchPoint.y >= 240)
 {
 touchPoint.y -= 32;
 paddle2.touch = touch;
 [paddle2 move: touchPoint];
 }
 }
}

The logic for when touches are moved across the screen hasn’t really changed
much. You just need to check the touch object that is now stored in the paddle
object to see if it is the correct touch. You will also offset the touch position, as
you did before, so the paddle is positioned in front of the touch. Modify the
touchesMoved method to be as follows:

// handle touch move events
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // if paddle not already assigned a specific touch then
 // determine which half of the screen the touch is on
 // and assign it to that specific paddle
 if (paddle1.touch == touch)
 {

Paddle Physics 133

 touchPoint.y += 32;
 [paddle1 move: touchPoint];
 }
 else if (paddle2.touch == touch)
 {
 touchPoint.y -= 32;
 [paddle2 move: touchPoint];
 }
 }
}

The logic for when the touch ends is the same, with the exception that you need
to set the touch property of the player’s paddle. Modify the touchesEnded meth-
od to be as follows:

// handle touches end events
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 if (paddle1.touch == touch) paddle1.touch = nil;
 else if (paddle2.touch == touch) paddle2.touch = nil;
 }
}

You now need to animate the paddles so the paddle images will actually move
towards the positions that were set in the touch handlers. For now, you are going
to remove all the other logic including the puck animate function. Change the
animate function to the following:

// animate the puck and check for collisions
- (void) animate
{
 // moves paddle
 [paddle1 animate];
 [paddle2 animate];
}

Now let’s build and run the application and check if there are any problems. Try
and move each of the paddles outside of their associated boundaries, as shown

Chapter 4: Physics134

in Figure 4-2. You should notice that the center point of the paddle never leaves
the red rectangle. It is restricted to each of the four walls even if you drag outside
of the rectangle area. This is exactly what you want. However, you may notice
an interesting issue that comes about when you have two players playing at each
end of the device. It appears that player two’s paddle located at the bottom is
positioned directly in front of the player’s touch position, but player one’s paddle
seems to be positioned with a little more overlap under the finger.

figure 4-2. Paddle boxes
restrict paddle movement

This issue was first brought to my attention when I filmed the O’Reilly
Breakdown video series for Realistic iPhone Game Development (http://oreilly.
com/catalog/0636920020639/). I had just reached this point of the lesson and was
testing out the multi-touch with two players. Courtney Nash, my co-host, was in
control of player one’s paddle at the top of the screen. My paddle was correctly
placed in front of my touch point, but Courtney noticed that her paddle seemed
to be covered up by her finger (see Figure 4-3).

Paddle Physics 135

figure 4-3. A problem with the paddles

It seemed like it was a bug in the code, so I checked the touch methods to make
sure the touch points were being offset by the same distance from the touch
point. The code was correct. I then tested in the Simulator and the paddles were
perfectly placed in front of the mouse pointer for both players. It appears that this
issue only happens on the device. So what was happening?

My best guess is that iOS is offsetting your touch point towards the direction of
the status bar. Of course, I have no way of knowing exactly how iOS has imple-
mented touch handling internally but I wanted to dig a little deeper into problem.
I created an iPhone application that would help me investigate this issue. The
application draws a circle around all the touch points on the screen and it also
supports every device orientation. I placed two fingers on the screen just like you
would do in a head-to-head two-player game of air hockey and noticed that the
touch point was in fact offset towards the top. As you can see in Figure 4-4, my
finger-tip on the left side of the photo is closer to the bottom edge of its circle
than the other finger-tip is to the top edge of its containing circle. If you would
like a copy of this program, please download it from my website at http://todd-
moore.com/.

Chapter 4: Physics136

figure 4-4. Touch offset towards status bar

Another test I did that helped verify this condition was rotating the iPhone
orientation into a landscape orientation and then placing my finger onto the
screen as if it were still in portrait mode. I noticed the circle was offset such that
it was positioned to the left side of my touch, which was in the direction of the
status bar. I also tested this on the iPad and experienced the same results. The
question now is how can you fix this so that player one can see their paddle?
If you could get the entire area that the touch covers then you could place the
paddle at the appropriate position, however, iOS only gives you a single touch
point so you really have no way of knowing. The only solution possible is to off-
set the top paddle a little farther down the screen.

Modify the touch method’s logic to offset the top paddle by offsetting it an addi-
tion 16 points to a total of 48. This appears to be a decent number and you have
enough of a margin from the player box where you can still position the paddle
against the goal box. Modify the touch logic as follows:

// handle our touch began events
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

Paddle Physics 137

 // if paddle not already assigned a specific touch then
 // determine which half of the screen the touch is on
 // and assign it to that specific paddle
 if (paddle1.touch == nil && touchPoint.y < 240)
 {
 touchPoint.y += 48;
 paddle1.touch = touch;
 [paddle1 move: touchPoint];
 }
 else if (paddle2.touch == nil && touchPoint.y >= 240)
 {
 touchPoint.y -= 32;
 paddle2.touch = touch;
 [paddle2 move: touchPoint];
 }
 }
}

// handle touch move events
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // if paddle not already assigned a specific touch then
 // determine which half of the screen the touch is on
 // and assign it to that specific paddle
 if (paddle1.touch == touch)
 {
 touchPoint.y += 48;
 [paddle1 move: touchPoint];
 }
 else if (paddle2.touch == touch)
 {

Chapter 4: Physics138

 touchPoint.y -= 32;
 [paddle2 move: touchPoint];
 }
 }
}

This problem really illustrates why it is so important to test on a real device. I
would have never seen this issue in the Simulator, as there the paddle is cor-
rectly positioned at the mouse pointer. The device is completely different than the
Simulator, especially when it comes to touch.

Now that you have verified the paddles stay within the red rectangles, go ahead
and comment out that code in viewDidLoad. It will be good to keep this code
around in case you need to later support a different resolution, such as the iPad. It
is time now to focus on the puck.

Puck Physics
It is time to put the puck into motion and get it colliding into things with a sense
of realism. I spent a lot of time thinking through the best way to handle the
puck. The puck logic was a lot more challenging than other parts of the code, as
there were a lot of interesting issues that came up along the way. The first thing
to realize about the puck: it’s the only thing that collides into other objects. The
collisions need to appear realistic, in that it bounces off the paddles at the correct
angle, as well as all of the walls. The simple rectangle intersection formula that
was used in the Paddles game will not be sufficient in determining collisions. The
puck and paddles are circular so treating them as rectangles would result in col-
lisions triggering before the objects actually touched and that wouldn’t look real-
istic. There needs to be a little more math necessary in order to properly handle
collisions. The puck should also glide like it is on a sheet of ice with a little bit
of friction so it slows down after a paddle strike. Finally, the goal boxes require
that the puck enter into them to score a point, but if missed then the puck should
bounce off the back wall.

Just like you did for the paddles, you are going to create a new object that handles
the manipulation of the puck image on the screen. Create a new object called

Puck Physics 139

“Puck” that inherits from NSObject just like the Paddle does. Modify the Puck
interface definition to appear as follows:

#import <Foundation/Foundation.h>
#import "paddle.h"

@interface Puck : NSObject
{
 UIView *view; // puck view this object controls
 CGRect rect[3]; // contains our boundary, goal1, and goal2 rects
 int box; // box the puck is confined to (index into
 //rect)
 float maxSpeed; // maximum speed of puck
 float speed; // current speed of puck
 float dx, dy; // current direction of puck
 int winner; // declared winner (0=none, 1=player 1 won
 // (0=none, 1=player 1 won point,
 // 2=player 2 won point)
}

// read only properties of puck
@property (readonly) float maxSpeed;
@property (readonly) float speed;
@property (readonly) float dx;
@property (readonly) float dy;
@property (readonly) int winner;

// initialize object
-(id) initWithPuck: (UIView*) puck
 Boundary: (CGRect) boundary
 Goal1: (CGRect) goal1
 Goal2: (CGRect) goal2
 MaxSpeed: (float) max;

// reset position to middle of boundary
-(void) reset;

// returns current center position of puck
-(CGPoint) center;

Chapter 4: Physics140

// animate the puck and return true if a wall was hit
-(bool) animate;

// check for collision with paddle and alter path of puck if so
-(bool) handleCollision: (Paddle*) paddle;

@end

You will notice a few similarities to the Paddle object interface that you already
created. The object is initialized with the image view that it will control, a bound-
ary rectangle to confine the object, and a maximum speed that it can travel. The
difference being you pass in two goal boxes which allow the puck to enter in and
ultimately score a point. Let’s talk a little bit about how I decided to handle the
puck implementation.

I originally implemented the puck to take an array of rectangles that represented the
walls the puck could collide into. I created two walls for the left and right side of the
table just like in the Paddles game. I then added two horizontal walls next to each
goal so the puck would bounce back into play if the goal was missed. This left me
with a total of six walls that the puck could collide into and bounce off. The Paddles
game was fresh in my mind and it seemed like a decent approach. I was going to
take it a step further and have a Wall object that contained the rectangle of the wall
and a new direction of the puck if a collision resulted. Creating this object would let
me keep both the wall and collision information in a single object. This seemed like
a decent solution, but after I got into it more I quickly realized that the design had
serious limitations. The first being, if I didn’t make my walls wide enough, the puck
could get pushed right through them. This could happen when the puck was trapped
in the corner against the paddle. Sure, I could have made the walls wider but it got
me thinking that I would really need to do a lot of testing in order to make sure all
the walls behaved correctly. The second issue came with the goal box, as the puck
would enter in at an angle, clip the edge of the back wall, and always bounce out. It
would never bounce in and that was bad because it didn’t seem realistic at all. There
had to be a better solution, and so I scrapped that approach and decided to start over.

I really liked the approach used with the Paddle object, in that you only had a sin-
gle rectangle that the object was restricted to. There wasn’t much chance of a cod-
ing error because the logic was so simple. The paddle can’t leave the box. Period.

Puck Physics 141

I started thinking that maybe there was a way I could do something similar with
the puck. If I used the same approach as I used for the paddles, then the puck
could be confined by a single rectangle that represented most of the screen. This
would work great to keep the puck inside the table. I just had to figure out how to
handle the special conditions for goal boxes.

My first thought for the goal boxes was to just ignore wall collisions when the
puck was in between the left and right points of the goal boxes. Basically there
would be a middle region down the center of the screen where the puck wouldn’t
test collision detection against the walls and that would allow the puck to slide
right into the goal box and score a point. This was a better approach and much
simpler in design than using six walls in my previous design. However, this
design had the same problem of my earlier design, in that the puck would not
bounce into the goal. The puck would always slide in most of the way but then
collision detection would engage and the puck would just appear back on the
table when a point should have been given. The design I wanted would allow the
puck to hit either edge of the goal box opening and bounce in for a score, as dem-
onstrated in Figure 4-5.

figure 4-5. Puck needs to bounce into goal box

Chapter 4: Physics142

Along the same lines of having more than one wall, I wondered if the puck
could have more than one rectangle that it could be restricted to. What if I had
two additional rectangles that represented the goal boxes? Maybe the puck
could somehow be allowed to travel from the main table area into these
additional areas. So, the puck starts by being confined by the table’s rectangle,
but if it slides into a goal box rectangle then that becomes its new home. Once
the puck slides into the goal box it would then be restricted to this new bound-
ary and ultimately score a point. This would solve the issue of not bouncing
into the goal box. The puck could slide in and hit either left or right side of the
goal box and still bounce in to score a point. This is the approach you will take
in implementing the puck.

Open the Puck.m implementation file for the Puck object. Add the synthesize
declaration for the puck properties, along with the initialization and deallocation
methods inside the implementation definition:

@synthesize maxSpeed, speed, dx, dy, winner;

-(id) initWithPuck: (UIView*) puck
 Boundary: (CGRect) boundary
 Goal1: (CGRect) goal1
 Goal2: (CGRect) goal2
 MaxSpeed: (float) max
{
 self = [super init];

 if (self)
 {
 // Custom initialization boundary
 view = puck;
 rect[0] = boundary;
 rect[1] = goal1;
 rect[2] = goal2;
 maxSpeed = max;
 }

 return self;
}

Puck Physics 143

- (void)dealloc
{
 [super dealloc];
}

You are saving all three rectangular areas into a single array. The puck will always
be confined to one of these rectangles. Just like you did with the Paddle object,
you need to add a reset function that will be called at the start of every round.
Instead of dropping the puck in the center, as you did with the paddles, you
will drop the puck at a random place along the center line. You can just use the
rectangles that were passed in to determine the center line of the table and the
goal box rectangle to determine a random position to drop within the circle that
is drawn on the table. You will also write a method to get access to the current
center position of the puck. Add the following implementation after the dealloc
method:

// reset to starting position
-(void) reset
{
 // pick a random position to drop the puck
 float x = rect[1].origin.x + arc4random() %
 ((int) rect[1].size.width);
 float y = rect[0].origin.x + rect[0].size.height / 2;
 view.center = CGPointMake(x, y);

 box = 0;
 speed = 0;
 dx = 0;
 dy = 0;
 winner = 0;
}

-(CGPoint) center
{
 return view.center;
}

Now you need to add the animate function—and this is a big one. This function
will handle moving the puck across the table while restricting its movement to one

Chapter 4: Physics144

of the defined boundaries. It will also return true if a wall was hit. You need this in
order for the game to play the collision sound, which is currently the sound used in
the Paddles game. I’ll get to improving the sounds in the next chapter.

The animate method applies friction to the puck so it slows down if it is moving.
To do this, the speed is multiplied by 0.99, so every frame of animation causes
the puck to get slower. Initially I had implemented the animate method so the
puck could come to a complete stop. This turned out to be a bad idea as the puck
could end up sitting partially in the goal box where the paddle couldn’t reach
it. There would be no way to continue the game if this happened and it would
force the players to reset the game, which is certainly not what you want. I had to
make a decision: do I write special conditional logic where the puck would always
keep moving inside the goal boxes, or do I just always keep the puck in motion?
Obviously, the puck didn’t start in motion, but I decided that once the puck was
put into motion it could just stay moving, albeit very slowly. This worked perfectly
and solved the goal box issue. In the code, you will notice I check if the speed is
moving, and if so, the speed is reduced, but never below 0.1. This allows for the
puck to not be moving at start, but once it is hit the puck will continue and stay in
motion until the round is reset.

The direction of the puck is represented with dx and dy variables just like in the
Paddles game. The new position of the puck is calculated by taking the current
position of the puck view and offsetting it by direction multiplied by speed. The
result is stored in the pos variable and used in a series of boundary checks.

The box variable specifies which rectangle the puck is currently confined to. If box
is equal to 0 then it is inside the main rectangle. As previous discussed, you want the
puck to slide into a goal box and then be confined to that goal box. Once it goes in, it
doesn’t come out. Just like a roach motel. The first two checks are implementing this
behavior, so that if the puck is in the main table area (box == 0) and is now
contained by either of the goal boxes (rect[1] or rect[2]), then the puck changes
the active rectangle to the containing goal box. Once this occurs, the puck can no
longer go back into the main box and eventually this results in a score...but not
immediately. I’ll get to that in the next part of the code:

-(bool) animate
{

Puck Physics 145

 // if there is a winner there is no more animation to do
 if (winner != 0) return false;

 bool hit = false;

 // slow the puck speed due to table friction but always keep
 // it in motion after initial hit
 // otherwise it could get trapped inside a player’s goal
 if (speed > 0)
 {
 speed = speed * 0.99;
 if (speed < 0.1) speed = 0.1;
 }

 // move the ball to a new position based on current direction
 // and speed
 CGPoint pos = CGPointMake(view.center.x + dx * speed,
 view.center.y + dy * speed);

 // check if we are in the goal boxes
 if (box == 0 && CGRectContainsPoint(rect[1], pos))
 {
 // puck now in goal box 1
 box = 1;
 }
 else if (box == 0 && CGRectContainsPoint(rect[2], pos))
 {
 // puck now in goal box 2
 box = 2;
 }
 else if (CGRectContainsPoint(rect[box], pos) == false)
 {
 // handle wall collisions in our current box
 if (view.center.x < rect[box].origin.x)
 {
 pos.x = rect[box].origin.x;
 dx = fabs(dx);
 hit = true;
 }

Chapter 4: Physics146

 else if (pos.x > rect[box].origin.x +
 rect[box].size.width)
 {
 pos.x = rect[box].origin.x + rect[box].size.width;
 dx = -fabs(dx);
 hit = true;
 }

 if (pos.y < rect[box].origin.y)
 {
 pos.y = rect[box].origin.y;
 dy = fabs(dy);
 hit = true;
 // check for win
 if (box == 1) winner = 2;
 }
 else if (pos.y > rect[box].origin.y +
 rect[box].size.height)
 {
 pos.y = rect[box].origin.y + rect[box].size.height;
 dy = -fabs(dy);
 hit = true;
 // check for win
 if (box == 2) winner = 1;
 }
 }

 // Put puck into new position
 view.center = pos;

 return hit;
}

The next part of the animate method confines the puck to the rectangle it is cur-
rently housed in. The puck is confined to the rectangle much like the paddles are
confined to their rectangle. The position of the puck is changed to always fall on the
edge of the defined rectangle. The direction of the puck is altered to bounce off the
defined walls. If it hits the left side of the wall then the direction of dx becomes pos-

Puck Physics 147

itive. If it hits the right wall, then dx is altered to be negative. If it hits the top wall,
dy is altered to be positive. If it hits the bottom wall, dy is altered to be negative.

The puck object is in charge of declaring a winner. There are two special cases
where this occurs and those are when it hits the top of the wall while in box one
or the bottom of the wall if in box two. These walls represent the back of the goal
boxes and if the puck hits that edge then a winner is declared. If the back wall of
goal box one is hit then this means player two has scored. If the back wall of goal
box two is hit then this is a score for player one. This allows each player to see the
puck slide completely into the goal before assigning the point and resetting the
round. After all that, the current position of the puck is set to the calculated posi-
tion and the method returns if any walls were hit.

The collision detection from the Paddles game wouldn’t work well because the
objects are circular. You need a way to detect when two circles overlap. I started
thinking about how to create an algorithm that could detect when two circles
intersect. It turns out the solution to this is rather simple. What if you just cal-
culated the distance between each center point and then compared it to the total
radius of both? It would basically have the same effect as detecting if two circles
intersect. If the center point is less than or equal to the sum of both radii then
that is an intersection. If the distance is greater than that amount then there is
no way they can be overlapping. The paddle is 64 points across so it has a radius
of 32 and the puck is 40 points across so it has a radius of 20. Adding both those
numbers together gives us the maximum distance that the two circles could be
apart but still touching, as shown in Figure 4-6. Any distance that is equal or less
than this amount means the puck has collided with a paddle.

figure 4-6. Paddle and puck
collision using distance

Chapter 4: Physics148

You will use the distance formula to calculate how far apart the paddle and puck
are from each other. If a collision occurs, you need to alter the direction of the
puck so that it bounces off the paddles in a realistic way. You also need to calcu-
late a new position to put the puck into so that it no longer intersects. If the puck
kept intersecting with the paddle then it might result in a huge burst of speed.
That’s exactly what I discovered when I started testing. Small hits could send the
puck away at a much faster speed than seemed natural and it wasn’t until I fired
up the debugger and put a breakpoint within the collision check that I noticed it
was being called more than once per hit. The only way to solve this was to move
the puck so that it was outside the radius of the paddle so that the next frame of
animation would not result in another collision with the same paddle:

// check for collision with paddle and alter path of puck if so
-(bool) handleCollision: (Paddle*) paddle
{
 // max distance that a puck and paddle could be for
 // intersection is half of each size
 // paddle is (64x64)=32 and puck is (40x40)=20
 // = max distance of 52
 static float maxDistance = 52;

 // get our current distance from center point of rectangle
 float currentDistance = [paddle distance: view.center];

 // check for true contact
 if (currentDistance <= maxDistance)
 {
 // change the direction of the puck
 dx = (view.center.x - paddle.center.x) / 32.0;
 dy = (view.center.y - paddle.center.y) / 32.0;

 // adjust ball speed to reflect current speed
 // plus paddle speed
 speed = 0.2 + speed / 2.0 + paddle.speed;

 // limit to max speed
 if (speed > maxSpeed) speed = maxSpeed;

Puck Physics 149

 // re-position puck outside the paddle radius
 // so we don’t hit it again
 float r = atan2(dy,dx);
 float x = paddle.center.x + cos(r) * (maxDistance+1);
 float y = paddle.center.y + sin(r) * (maxDistance+1);
 view.center = CGPointMake(x,y);

 return true;
 }

 return false;
}

Now that you have the puck object, it is time to integrate it with the view controller.
Just as you needed to do with the Paddle object, import the Puck.h file at the top of
the PaddlesViewController.h interface file. Insert the puck object declaration
below the existing paddle helpers so that it appears as follows:

 // Paddle and puck helpers
 Paddle *paddle1;
 Paddle *paddle2;
 Puck *puck;

You need to define the rectangles used to confine the puck to the main area
of the table or one of the two goal boxes. Add this code to the top of the
PaddlesViewController implementation after the existing gPlayerBox
declaration:

// puck is contained by this rect
struct CGRect gPuckBox =
{ // x, y width, height
 28, 28, 320-56, 480-56
};

// goal boxes that puck can enter
struct CGRect gGoalBox[] =

Chapter 4: Physics150

{
 { 102, -20, 116, 49 }, // player 1 win box
 { 102, 451, 116, 49 } // player 2 win box
};

Just as you did for the Paddle rectangles, add debug code that draws the goal boxes
and puck boundary on the screen. Add the following after the existing debug code
inside the viewDidLoad method:

 // debug code to show goal boxes
 for (int i = 0; i < 2; ++i)
 {
 UIView *view = [[UIView alloc] initWithFrame:
 gGoalBox[i]];
 view.backgroundColor = [UIColor greenColor];
 view.alpha = 0.25;
 [self.view addSubview: view];
 [view release];
 }

 // debug code to show puck box
 UIView *view = [[UIView alloc] initWithFrame: gPuckBox];
 view.backgroundColor = [UIColor grayColor];
 view.alpha = 0.25;
 [self.view addSubview: view];
 [view release];

Notice that when you run with the debug code enabled, you will see that the goal
boxes slightly overlap with the main puck box, as shown in Figure 4-7. This was
by design so that it wouldn’t be possible to hit the edge of these areas and have the
puck mistakenly bounce out. This ensures the puck will always slide into the goal
box and ultimately stay in the goal box until hitting the back wall. So did I think
about that initially? Nope, while testing the game I witnessed the puck bounce off
the edge of the goal box without a paddle being in the way. All part of the journey
of writing a game.

Puck Physics 151

figure 4-7. Puck and goal boxes

Go ahead and allocate the puck object with the other two paddle objects. You
will initialize it with the viewPuck image view, boundary rectangle, goal boxes,
and maximum speed. Add the following into the viewDidLoad method after the
paddle allocations:

 puck = [[Puck alloc] initWithPuck:viewPuck
 Boundary:gPuckBox
 Goal1:gGoalBox[0]
 Goal2:gGoalBox[1]
 MaxSpeed: MAX_SPEED];

Add the releasing of the puck object to the dealloc and viewDidUnload methods:

 [puck release];

You need to reset the puck position so that it will be randomly placed in the
center of the screen when the round starts. Replace the contents of the reset
method with the following:

Chapter 4: Physics152

- (void)reset
{
 // reset paddles and puck
 [paddle1 reset];
 [paddle2 reset];
 [puck reset];
}

Now you need to put the puck into motion and check for paddle collisions.
Remember that the collision, animate, and goal checking methods return true if a
collision occurred, so you can use that to play the existing sounds for now. Replace
the contents of the animate method with the following:

// animate the puck and check for collisions
- (void) animate
{
 // move paddles
 [paddle1 animate];
 [paddle2 animate];

 // Handle paddles collisions which return true if a collision
 // occurred
 if ([puck handleCollision: paddle1] ||
 [puck handleCollision: paddle2])
 {
 // play paddle hit
 [self playSound: SOUND_PADDLE];
 }

 // animate our puck which returns true if a wall was hit
 if ([puck animate])
 {
 [self playSound: SOUND_WALL];
 }

 // Check for goal
 if ([self checkGoal])
 {
 [self playSound: SOUND_SCORE];
 }
}

Puck Physics 153

After checking for paddle collisions and animating the puck you will then check
for a goal. However, this method is still based off of the previous Paddles game,
which will end the round as soon as the puck enters the goal box. You want the
puck to go all the way in and hit the back wall of the goal box before signalling
the end of the round. In order to do that, you will use the new winner property of
the puck. Modify the checkGoal method to be the following:

- (BOOL) checkGoal
{
 // check if ball is out of bounds and reset game if so
 if (puck.winner != 0)
 {
 // get integer value from score label
 int s1 = [viewScore1.text intValue];
 int s2 = [viewScore2.text intValue];

 // give a point to correct player
 if (puck.winner == 2) ++s2; else ++s1;

 // update score labels
 viewScore1.text = [NSString stringWithFormat: @"%u", s1];
 viewScore2.text = [NSString stringWithFormat: @"%u", s2];

 // check for winner
 if ([self gameOver] == 1)
 {
 // report winner
 [self displayMessage: @"Player 1 has won!"];
 }
 else if ([self gameOver] == 2)
 {
 // report winner
 [self displayMessage: @"Player 2 has won!"];
 }
 else
 {
 // reset round
 [self reset];
 }

Chapter 4: Physics154

 // return TRUE for goal
 return TRUE;
 }

 // no goal
 return FALSE;
}

Before you test out the game, go ahead and comment out all the debug code in
the viewDidLoad method. This will ensure that those views do not conflict with
the touch handling of the game. You can always uncomment the code if you need
to make adjustments later. The viewDidLoad method with the debug code com-
mented out should appear as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self initSounds];

 /*
 // debug code to show player boxes
 for (int i = 0; i < 2; ++i)
 {
 UIView *view = [[UIView alloc] initWithFrame:
 gPlayerBox[i]];
 view.backgroundColor = [UIColor redColor];
 view.alpha = 0.25;
 [self.view addSubview: view];
 [view release];
 }

 // debug code to show goal boxes
 for (int i = 0; i < 2; ++i)
 {
 UIView *view = [[UIView alloc] initWithFrame: gGoalBox[i]];
 view.backgroundColor = [UIColor greenColor];
 view.alpha = 0.25;
 [self.view addSubview: view];

Puck Physics 155

 [view release];
 }

 // debug code to show puck box
 UIView *view = [[UIView alloc] initWithFrame: gPuckBox];
 view.backgroundColor = [UIColor grayColor];
 view.alpha = 0.25;
 [self.view addSubview: view];
 [view release];
 */

 // create our paddle helpers
 paddle1 = [[Paddle alloc] initWithView: viewPaddle1
 Boundary: gPlayerBox[0]
 MaxSpeed: MAX_SPEED];

 paddle2 = [[Paddle alloc] initWithView: viewPaddle2
 Boundary:gPlayerBox[1]
 MaxSpeed: MAX_SPEED];

 puck = [[Puck alloc] initWithPuck:viewPuck
 Boundary:gPuckBox
 Goal1:gGoalBox[0]
 Goal2:gGoalBox[1]
 MaxSpeed: MAX_SPEED];

 [self newGame];
}

You should also remove the old variables that are no longer being used from the
PaddlesViewController interface file. This includes the dx, dy, and speed vari-
ables that are now contained by the Puck helper object. The checkPuckColli-
sion and increaseSpeed methods should also be removed from the implemen-
tation as they are no longer needed. The PaddlesViewController.h file should now
appear as follows:

#import <UIKit/UIKit.h>
#import "AudioToolbox/AudioToolbox.h"
#import "Paddle.h"
#import "Puck.h"

Chapter 4: Physics156

@interface PaddlesViewController : UIViewController
{

 // Paddle and puck helpers
 Paddle *paddle1;
 Paddle *paddle2;
 Puck *puck;

 NSTimer *timer;

 UIAlertView *alert;

 SystemSoundID sounds[3];
}
@property (nonatomic, retain) IBOutlet UIView *viewPaddle1;
@property (nonatomic, retain) IBOutlet UIView *viewPaddle2;
@property (nonatomic, retain) IBOutlet UIView *viewPuck;
@property (nonatomic, retain) IBOutlet UILabel *viewScore1;
@property (nonatomic, retain) IBOutlet UILabel *viewScore2;

- (void)resume;
- (void)pause;

@end

You have finished up a lot of coding in this chapter and now have a full working
game of two-player air hockey. Go ahead and run the game and test it out. You
should notice the puck slides across and collides into objects in a realistic
manner. This is nothing like the original Paddles game, and shows how you
can reuse existing game logic to speed up development.

You now have a game that looks like air hockey, plays like air hockey, but sounds
nothing like air hockey. You are still using the sounds from the Paddles game, which
really takes away from the realism. In the next chapter, I will discuss how to record
and edit realistic sound effects, which will be used to replace the existing sounds.

Puck Physics 157

Chapter 5: Sounds158

5
Sounds

In this chapter, you will learn how to create realistic sounds for your game. You can
download, purchase, or record the sound effects necessary for your game. Just as it
was important to learn how to manipulate graphics, I will show you how you can edit
your sound effects and export them into a format best suited for an iPhone game.

what Is Sound?
Sound is a form of energy, similar to that of light and electricity, and is created when air
molecules vibrate. You might have heard of the term “sound waves,” and that is because
sound moves through the air in a wave pattern. These waves are created from differ-
ences in air pressure, as shown in Figure 5-1. Think of when you clap your hands, you
basically create differences in air pressure, which causes sound waves to be emitted.
When the sound waves reach your ears, they are interpreted by your brain, and then
you recognize the sound as clapping. In the case of air hockey, we want our sounds to be
recognized as those that we might hear while playing on a real air hockey table.

Pr
es

su
re

Time

0

figure 5-1. Sound wave

what Is Sound? 159

digital recordings
Sound is recorded using a microphone, which has a small membrane that is free
to vibrate. The air vibrations are converted into electrical waves, such that when
higher pressure is measured it produces higher voltage. The electrical waves can
then be recorded onto either an analog device such as a tape recorder, or to a
digital device such as a personal computer. Analog devices convert the electrical
signal into a magnetic signal to be stored on tape. Personal computers equipped
with a sound card (and they all have one these days) convert the electrical sig-
nal into a digital recording. Remember the sound files you added to the Paddles
game? Those were obviously digital recordings that you intergrated into the game,
but what exactly does that mean?

A digital recording is a stream of discrete numbers that represents an analog sig-
nal. In the case of sound, the numbers will refer to snapshots of electric voltage
coming from our microphone. These snapshots, if taken thousands of times per
second, will give a good approximation to the original sound wave, as shown in
Figure 5-2. There are two factors that affect the quality of a digital recording, and
they are sample rate and sample format.

figure 5-2. digitized sound wave

Sample rate is how often a snapshot is taken per second. Higher sample rates al-
low the digital recording to accurately record higher frequencies of sound. The
sampling rate should be at least twice the highest frequency you want to record.

Chapter 5: Sounds160

Given that humans can’t hear above 20,000 Hz, a sample rate of at least double
that amount will result in a high quality recording. The standard audio CD uses
44,100 Hz as the sample rate.

Sample format refers to how big of a number is being used to represent a single
sample. Remember, a single sample is just a number that represents a position
on the wave, and the sample format is how big or small that number can be. The
higher the sample size used will result in a more dynamic range with softer softs
and louder louds. You might have heard of two common formats which are 8 and
16 bits. This refers to how many bits are being used to represent a single sample.
CD audio is stored as 16-bit samples, which provides 216 or 65,536 possible sam-
ple values. Using an 8-bit format will reduce the amount of storage space required
by half and only provide 28 or 256 possible sample values. The 8-bit format greatly
reduces the sound quality and I do not recommend using it.

The sound recorder that I use can record in a 24-bit format, which provides
1,677,7216 different values, but personally I can’t really tell the difference between
16- and 24-bit formats. There is a much more noticable difference in quality going
from 8 to 16, than from 16 to 24. But it is still good practice to keep your master
sound files in the highest quality format possible, and export the sounds in a for-
mat that is best supported by the hardware. Sounds a little like the advice given in
the graphics chapter right?

file formats
There are many sound file formats supported by iOS. Sound files act as containers
for the sound data and include a description of the sound samples so that they may
be properly read for playback. This information includes whether the sound data is
mono or stereo, the format or size of each sample, and the sample rate. There can
be additional metadata, such as the type of compression or codec that was used or
even album artwork and artist information. The type of compression used can be
lossy or nonlossy formats. You probably remember our discussion on lossy and
nonlossy when it came to graphic image formats, and sound is no different.

The source code currently uses the AudioServicesPlaySystemSound function,
which requires the file format to be packaged in a .caf, .aif, or .wav file. This func-
tion allows for the sound to be in either a PCM or IMA4 (IMA/ADPCM) format.

what Is Sound? 161

PCM stands for Pulse Code Modulation, which is the technical way of describing
how analog sound is digitally represented as a series of numbers in the digital audio
file. The important thing to know about PCM is that it is uncompressed, which also
means it is nonlossy. You can safely edit the sound file over and over without losing
sound quality. This also means that because compression is not used, it will take
up the most storage space. IMA4 is a simple type of sound compression that can
reduce file sizes by almost 3 times their original size. This can be important if you
have lots of sound files and want to reduce your application size.

An extremely useful tool on the Mac is afconvert, which converts audio
files into many different sound formats. If you are having issues with the
playback of your sound files, you can use this tool to create a new sound
file that is supported on the ioS device. for example:

afconvert -f caff -d LEI16@44100 -c 1 input.wav output.caf

This will convert the input.wav file into a caff-formatted file with a sample
format of 16-bit little endian integers and a sample rate of 44,100 hz. The
output file created will be named output.caf and have no playback issues
on an ioS device.

You will typically use the PCM format for all your sound effects, and a com-
pressed format for background music. Music can take up a lot of space in your
application, and because of that it is best to use a compressed format like MP3
or AAC. In order to play back sounds in these formats, you will need to use
a more capable class that supports streaming and compression, such as the
AVAudioPlayer. Streaming is a good thing for music because we don’t want to
load an entire song into memory. Instead, the sound file is read in chunks such
that music playback is not interrupted and the memory footprint remains very
small. The compressed formats can also be decoded with the help of the hard-
ware, which means it requires less from the CPU. The more processes that can be
handled outside of the CPU will give your program more cycles to handle other
things such as game logic, which ultimately helps to achieve higher frame rates.
This is why using a sound format that requires software decoding is not preferred.

Chapter 5: Sounds162

hardware-assisted decoding can only operate on one single compressed
file at a time. If you mix multiple compressed formats for playback, every
file played after the first one will require software-based decoding and
put more strain on the CPu. If you allow iPod music to play inside your
game, it receives priority over your application and will receive the hard-
ware-assisted decoding. The bottom line is keep your music compressed
and in a format that allows for hardware-assisted decoding to reduce
CPu strain, and do not mix iPod music if your game is also playing com-
pressed audio.

Creating Sounds
There are a couple ways to obtain sounds for your game. You can download free
sounds from the Internet, pay for a sound effect library, or even record the sounds
yourself. If you are downloading sounds, you should make sure the license does
in fact permit you to use the sounds in your application. Some licenses do not
permit commercial use, so it is important to review the type of license and read
over any terms of use prior to downloading or purchasing.

downloading Sounds
A great website to visit is http://freesound.org/, which has a huge collection of free
sounds that are licensed under the Creative Commons Sample Plus license. This
license allows you to use the sounds in a commercial application as long as you
attribute the creator of the file. You can preview sounds directly from the web-
site, but if you want to download the file you will need to create a free account.
This also works nicely because the website tracks every sound file you download,
which helps you to properly give credit to the person who created the sound. This
website does not include songs or compositions, so if you want that in your game
you will have to look elsewhere.

One of my favorite ways to create music is using GarageBand that comes free
on Mac OS X. It includes many loops that can be used in your game. You can

downloading Sounds 163

also use the audition feature to pick a genre of music and select different types
of instruments that you want in your song. It will create a starter song for you
that you can edit and make unique. It can be a lot of fun, and I recommend try-
ing that if you’re looking for a decent free option for music or background beats.
I used a few trance-style loops from Garage Band in my Glow Burst game. The
loops were small enough that they could be loaded into memory using OpenAL,
which allowed me to dynamically change the pitch of the sound. This allowed me
to speed the music up as time elapsed, adding a little more intensity to the game.
The player not only had the pressure of watching a timer bar but also could hear
it with the music speeding up.

openAl stands for open Audio library and is a cross-platform sound API
that is supported on all ioS devices. It supports mixing multiple sounds
together, three-dimensional positioning of sounds, and even adjusting
pitch and other characteristics. openAl is a great library to use when you
need total control over the playback of sounds.

Another option for getting music into your game is purchasing royalty-free mu-
sic. The websites http://www.partnersinrhyme.com/ and http://www.musicloops
.com/ have a large selection of music available at reasonable rates. Those sites also
have a very flexible license agreement, but as always be sure to read over the re-
strictions to make sure the license will meet your needs.

recording Sounds
In order to create your own sounds of air hockey you will need a digital sound
recorder or a microphone connected directly to your computer. You will also
need a couple of props. In my case, I had a friend let me borrow their air hockey
table pieces, which included two paddles and a puck. If you don’t have these items
available, you could always use something similar such as a coffee mug for the
paddle, and a hard plastic coaster for the puck. You just need objects that will
make similar sounds.

Chapter 5: Sounds164

One of my apps that I thought had really good sounds was called App Ocean.
This was a physics simulation where apps drop into an ocean. You hear them
splash in, and you also hear them hit the bottom of the ocean and other apps. In
order to create those sound effects, I recorded dice dropping into a cup of water.
You heard the splash of the water, and then you heard the collision when it hit the
bottom of the cup. It worked out really well and only took a couple minutes of my
time to record. Another common sound effect you might need are guns and ex-
plosions. I once brought my recorder to a gun range and just left it recording on a
table. It captured a lot of different sounds that I can use as is, or after applying ef-
fects such as pitch shifting—which I used to morph gunshot sounds into power-
ful explosions. It can be a lot of fun creating your own sounds, and even give you
an excuse to get out of the house.

When it comes time to actually do the sound recording, make sure you do so
in a quiet place if possible. Always leave at least a second of silence before and
after the recording. I will show you how to trim away this silence in a bit but just
remember the microphone can actually “hear” better than your ears can. This is
why it is important not to turn off the recording too early, and even more impor-
tant to make sure nobody is talking and minimize the use of noisy equipment. My
recorder picks up so much ambient noise that I sometimes have to turn off things
like the house air conditioner or shut down computers that have a noisy fan. Take
a recording of complete silence and give it a listen to see if there is any noise in
the playback. You can then make adjustments to make it as quiet as possible.

I suggest picking up a basic field recorder to do your recordings. That way you
will be mobile and can easily get the microphone into the best position. On the
set of the O’Reilly Breakdown series, I used my field recorder with the help of
Courtney Nash to record the paddle sounds (see Figure 5-3). Make sure to con-
figure your recorder so that the recording will be done with at least a 44 kHz
sample rate and 16-bit sound format. This is the same format you will find with
CD audio. Most recording devices or software will record in the best possible for-
mat so you might not even have to make adjustments. The most important part of
recording is watching your levels. Distortion can be created if your levels get too
high or go above the maximum level. The other issue is the level being too soft,
as that will add a lot of noise especially when you normalize the sound (we will
discuss normalization later).

recording Sounds 165

figure 5-3. recording sounds

You want to record three sounds for the air hockey game:

• The puck hitting the wall

• The paddle striking the puck

• The puck dropping into the goal

Start the recorder and place the microphone or device on the table so you can re-
cord the game objects. We will record the sound of the puck hitting the wall. Take
the puck, coaster, or whatever you’re using to represent the puck and tap it on
the table a few times. Make sure to get pretty close to the microphone, but keep a
close eye on the levels, as you don’t want it to be so close that it distorts. Record
this sound multiple times, each at a slightly different angle and position. You
want a lot of different options so you can pick the best one to use during the edit
process. Take the paddle object and slide it into the puck such that the puck slides
away from the microphone. Again, take a few recordings so you have options, and
make sure not to make any noise before or after the recording. The sound effect
should be a nice smooth sliding sound that fades away from the microphone.
Now drop the puck on the table at an angle so hopefully it spins around before

Chapter 5: Sounds166

coming to a stop. This will be the score sound when the puck drops into the goal.
As before, make sure to record multiple versions so you can pick the best one.

Once you have recorded all three sounds each with several variations you can
stop the recording. Transferring the sound files to the computer is usually accom-
plished by connecting the supplied USB cable from the device to the computer
and accessing it like an external drive. If you used a software program to record
your sounds, make sure to save a backup copy so you can always revert to the
original if needed. If you are prompted to pick a sound format to save in, always
choose a nonlossy format such as uncompressed PCM. Never use a lossy format
such as MP3 to save your master recording.

You will now learn how to edit this recording into three short sound effects for
use in the game.

editing Sounds
In this section, you will use Audacity, which is an open source tool for recording and
editing sounds. Download a free copy of Audacity at http://audacity.sourceforge.net/,
which can be installed on Windows, Mac OS X, and Linux operating systems. I will
show you how to use Audacity to crop, trim, normalize, and fade out each sound
effect.

I always keep a master copy of my sound recording that will never be modi-
fied. This allows you to start over during the editing process. The first thing you
need to do is make a copy of your master audio file and open it with Audacity.
You will now be presented with a graph of your wave form audio. Put on a set of
headphones and listen to your audio. It is important to use headphones instead
of listening with speakers because you will be able to hear things much clearer. I
have made the mistake of just using desktop speakers—it can lead to mistakes in
editing, or leaving in background noise that can only be heard with headphones.
We want our sound to not include any unwanted noises such as people talking,
pops, or distortion.

As shown in Figure 5-4, I highlighted the sound that I found the most pleasing
for the score sound effect. I could hear the puck land on the table and roll around
along the edges and it sounded great. It also looks great in terms of the graph, as

editing Sounds 167

it was uniform and had good levels. It wasn’t too loud where it would distort, and
not too low where you could hear other noise. Once you have isolated your favor-
ite scoring sound, change the selection to all the audio before it starts. Make sure
to keep a little bit of silence before the sound starts and either hit the Delete key
or select Edit→Delete from the menu. Press the play button from the toolbar or
the space key to hear the sound from the beginning, which should start with the
sound you wanted. Now select right before the next sound starts, leaving plenty of
silence after the clip, and highlight all the way to the end. Press Delete again and
you will have our sound effect completely isolated with silence padded on both
ends. Press Command-F or select View→Fit in Window so that the entire clip will
fill the window, making it easier to see the sound data points. At this point you
should be able to play the sound and it will be the only sound effect heard. There
should be plenty of silence such that the clip does not abruptly stop during the
playback. If you trimmed too close to the sound you can also undo your edits and
try again, using Command-Z or selecting Edit→Undo from the menu.

figure 5-4. editing air hockey sounds

You want the audio to play immediately, which means you need to really dig into
the start of the sound and delete as much as possible. A simple way to do this is by

Chapter 5: Sounds168

selecting the first portion of the sound and pressing Command-E to zoom in to the
entire selection, or by selecting View→Zoom to Selection from the menu. I suggest
doing this a few times until you can zoom in far enough to see both silence and the
start of the audio wave, as shown in Figure 5-5. If you cut into the sound too much,
it might create a popping sound since the sound wave would not flow smoothly
from the start. Place the cursor on top of silence but pretty close to the start of
the audio. Now select Edit→Select Left of Playback Position from the menu. You
will be prompted to specify where to select, which you should leave set to 0 hours,
0 minutes, 0 seconds to specify the start. Click OK and now all the audio before
the cursor will be selected. Press the Delete key to remove this audio. Now press
Command-F to fit the entire sound clip in the window.

figure 5-5. highlighting audio to delete

Play the audio back so you can determine where the sound stops and silence be-
gins. In my case, it was around the one second mark, which is a good length for this
sound effect. I selected everything from this position to the end and then deleted it.
The sound clip was left completely isolated and trimmed, which provides for quick-
er playback. Just to make sure the clip ends on silence, highlight a portion of the
audio near the end and select Edit→Fade Out from the menu, as shown in Figure

editing Sounds 169

5-6. This will make sure the sound does not abruptly stop but rather smoothly fades
away. In my case, I ended up selecting about 0.25 seconds of audio at the end to
fade out. There is no hard rule on what works best, so you might want to try a few
different durations. The goal is to always start the sound effect as quickly as possible
from silence, and then fade out the sound near the end so no artifacts exist.

figure 5-6. fading out the audio

The final touch you want to do is normalize the audio. This will make sure all of
our sound effects are of the same sound level. It would be great if all our record-
ings had the same levels, but it is impractical to think you can achieve that in the
recording process alone. Normalizing your audio will make the levels peak to
the same amount, which will keep all of the sound effects consistant across the
board. The entire sound clip will be scaled to a new maximum amount. Select
Effect→Normalize from the menu, which will prompt you to specify the maxi-
mum amplitude. I recommend using something less than the maximum amount
of 0 dB. Change the maximum amplitude to be –1 dB, as shown in Figure 5-7.
This will give a little headroom that should help out if this sound ever needs to be
mixed with others. For now, you just want all the sounds to have the same maxi-
mum level.

Chapter 5: Sounds170

figure 5-7. normalizing audio

Now you need to export the sound so it can be used by the game. Select
File→Export from the menu and save the file format to be a WAV-signed 16-bit
PCM. Now repeat all these steps for our paddle and wall collisions. Verify that all
the files you exported are named score.wav, wall.wav, and paddle.wav. Open each
of them in Audacity and verify they are in the proper format and are fairly short
in length.

You have finished recording and editing the sounds necessary for the air hockey
game. Now you just need to copy and replace the existing sounds from our
Paddles game into our Air Hockey project. You will need to use Finder to copy
and replace the existing sound files. You can quickly open Finder to the exist-
ing sounds by Command-clicking on one of the sound files in the project, and
selecting Show in Finder from the pop-up. Build and run the game with the new
sounds and make sure they all play back correctly. You might need to do a clean
build in case the previous sounds were not updated during the build process.
Hopefully you will find that the game looks, plays, and now sounds realistic.

editing Sounds 171

Chapter 6: Computer AI172

6
Computer AI

In this chapter, I will show how to create a computer player that can play a decent
game of air hockey. I will investigate the different behaviors of a human player
in order to come up with a strategy that the computer can follow. This logic will
tweaked to allow for different difficulty levels of play. Multiple levels of play will
allow people to start at an easier level so they can learn how to play and then
progress up in difficulty. The first thing you will need to do is create a title screen
for the game so the player can choose to play against the computer or play the
two player mode that has already been implemented.

Computer Player Menu
You have only been using one view controller that is in charge of the gameplay.
You will now introduce a new view controller to manage the title screen. You
need to create a new view controller just like you did for the Paddle and Puck
objects, by Control-clicking the Paddles folder in the Navigator and selecting
New File... from the pop-up menu. Instead of selecting the NSObject subclass,
you will select UIViewController instead, and then click Next. Name the
Class TitleViewController, make sure the “Targeted for iPad” option is not
checked, “With XIB for user interface” is checked, and then click Next. Make
sure the new class is being created in the same location as all the other files and
click Create. Xcode has created TitleViewController.h, TitleViewController.m, and
TitleViewController.xib files and added them to the project.

You will now design the title view by using the title image that you created in
Chapter 3, the Graphics chapter, along with buttons to select between two player
or computer mode. Select the TitleViewController.xib file in the Project Navigator
to display the file in the Interface Builder editor. Make sure the Utility pane is open
so you can get access to the inspectors, and then select the Attributes Inspector. As
you did with the Paddles game, change the Status Bar under Simulated Metrics to
None. Click on the Size Inspector and adjust the view height to be 480, which rep-

Computer Player Menu 173

resents the full screen without the status bar. Using the Media Library, drag over the
Title.png file into the main view. Align the image view so that it fills the entire view.
Switch over to the Objects Library and drag two Round Rect Buttons onto the view
and position them into the center of the screen. Change the button text on the top
button to “Computer” and the bottom button to “Two Player.” Change both button
sizes to be 180×44, which match the button image sizes you created in Chapter 3,
the Graphics chapter. The default buttons will appear as shown in Figure 6-1.

figure 6-1. Adding buttons to the title view

Buttons will always be in one of four different states: normal, highlight, selected, and
disabled. The button properties such as title text, title color, and background image are
set to a specific button state. The buttons that you already created represent the nor-
mal and highlighted states. The other states, selected and disabled, are not going to be
used. The selected state only really applies to segment controls where you have select-
ed a specific item that will remain selected until you change it. The disabled state does

Chapter 6: Computer AI174

not allow for the button to be pressed and will typically be grayed out to show this.
The buttons on the title screen will never be disabled so this state is also not needed.

Select both of the buttons by clicking on the Computer button, then press and
hold the Command button while clicking on the Two Player button. Now that
both buttons are selected, you can edit their properties at the same time. Change
the Type of button to Custom. With the State Config set to Default, change the
Background image dropdown to button.png. You will leave the Text Color set to
the default blue color. Now switch the State Config to Highlighted, and change
the Background image to button_hot.png. The Text Color of the button should
stay White Color for the Highlighted state so it can be easily read against the blue
gradient background. The buttons should now appear with the background of
the button.png image, as shown in Figure 6-2. The title view, when displayed, will
toggle between the two button images when tapped.

figure 6-2. buttons with images
Computer Player Menu 175

Create a new action outlet from the Two Player button to the TitleView
Controller header file and name the new method onPlay. You could create
a new function for the Computer button, but I’d rather use the Tag property to
pass along an integer value to the same method. The only thing you really need
to tell the view controller is if the computer should be playing or not. So you can
just set the Tag variable to specify if the computer is playing or not. A value of 0
will mean that the computer is not playing and a value of 1 means the computer
is playing. In order to do this, create an action from the Computer button to the
existing onPlay method as shown in Figure 6-3.

figure 6-3. Connecting action to existing method

Bring up the Attributes Inspector for the Computer button and enter a value of
1 for the Tag property, as shown in Figure 6-4. The default tag value is 0, which
means the Two Player button is already good to go. The onPlay method passes
along the sending control when it is tapped, so you can use that parameter to
query for the Tag value. This will allow you to know which button was pressed,
based on the Tag number, while reusing the same method to handle starting
the game.

Chapter 6: Computer AI176

figure 6-4. Specifying Tag number in Interface builder

Now you need to change the app to launch the new title view controller instead of
the previous game controller. The application delegate is responsible for creating the
PaddlesViewController and assigning it to the viewController property. You
want to modify it such that the TitleViewController is created initially instead of
the PaddlesViewController.

You need to update the PaddlesAppDelegate.h file to use the TitleView
Controller class. In order to do this, you need to add a class declaration under
the existing PaddlesViewController declaration so that it appears as follows:

#import <UIKit/UIKit.h>

@class PaddlesViewController;
@class TitleViewController;

Now change the viewController property from a PaddlesViewController to
a TitleViewController, so that it appears as follows:

@property (strong, nonatomic) TitleViewController
*viewController;

Computer Player Menu 177

Open up the PaddlesAppDelegate.m file so you can import the new
TitleViewController class definition. Add the following to the existing import
statements:

#import "TitleViewController.h"

Modify the didFinishLaunchingWithOptions method to create a
TitleViewController and assign it to the viewController property. The
method should be modified to appear as follows:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[[UIWindow alloc]
 initWithFrame:[[UIScreen mainScreen] bounds]]
 autorelease];
 // Override point for customization after application launch.
 self.viewController = [[[TitleViewController alloc]
 initWithNibName:@”TitleViewController”
 bundle:nil] autorelease];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

The application delegate will now instantiate a TitleViewController not
the PaddlesViewController. But before you can run the application, you
need to modify the application delegate so that it does not call the pause
and resume methods on the viewController. This would cause a crash
since the viewController is now a TitleViewController and not a
PaddlesViewController. Modify the following application delegate methods
so the pause and resume calls are commented out:

- (void)applicationWillResignActive:(UIApplication *)application
{
 //[self.viewController pause];
}

- (void)applicationDidBecomeActive:(UIApplication *)application

Chapter 6: Computer AI178

{
 //[self.viewController resume];
}

Build and run the application. You should notice that the title view controller
is displayed. Tap on each button to make sure the background of the button is
toggled between the normal and hot image, as shown in Figure 6-5.

figure 6-5. button selected

The button actions have not been implemented to do anything yet, so you will
work on that next. You need to create a couple methods in the application
delegate that will allow playing of the game, and another method to show the
title screen once the game finishes. You also need to add a new property to the
PaddlesViewController so you know if the computer is playing or not. Add the
following computer property to the PaddlesViewController interface:

@property (assign) int computer;

Computer Player Menu 179

Add the following synthesize statement at the top of the PaddlesViewController.m
file:

@synthesize computer;

You also need to add a new property to the application delegate that will hold
the PaddlesViewController object when the game is started. Open the
PaddlesAppDelegate.h file and add the following property to the list of existing
properties:

@property (strong, nonatomic) PaddlesViewController *gameController;

Add declarations for showTitle and playGame methods in the application del-
egate header:

- (void)showTitle;
- (void)playGame: (int) computer;

The playGame method will allocate a new PaddlesViewController object, pass
along the computer parameter, and then present the view controller modally. This
will display the game on top of the existing title view controller. You will imple-
ment the showTitle method by dismissing the modally presented game control-
ler. Add the following code into the application delegate implementation file:

- (void)showTitle
{
 // dismiss the game controller
 if (self.gameController)
 {
 [self.viewController dismissModalViewControllerAnimated:
 NO];
 self.gameController = nil;
 }
}
- (void)playGame: (int) computer
{
 // present the game over the title
 if (self.gameController == nil)
 {
 self.gameController = [[[PaddlesViewController alloc]
 initWithNibName:@”PaddlesViewController”

Chapter 6: Computer AI180

 bundle:nil] autorelease];
 self.gameController.computer = computer;

 [self.viewController presentModalViewController:
 self.gameController animated:NO];
 }
}

Now you need to make a call to play the game when the buttons are tapped in the
title view controller. Open the TitleViewController.m file and add the following
import statement so you can access the application delegate and the new methods
that were added:

#import "PaddlesAppDelegate.h"

You need to modify the onPlay implementation to get the application delegate
and call the playGame method with the computer property. The sender object
that is passed into the onPlay method needs to be cast into a UIButton control
so the tag property can be accessed. Remember, you set the Computer button
to have a tag value of 1. You can simply pass along the tag variable of the button
to the playGame method. Modify the contents of the onPlay method to be the
following:

- (IBAction)onPlay:(id)sender
{
 PaddlesAppDelegate *app = (PaddlesAppDelegate*)
 [UIApplication sharedApplication].delegate;
 UIButton *button = (UIButton*) sender;
 [app playGame: button.tag];
}

Run the game; notice it allows going from the title screen into a new game.
However, once the game finishes, it does not return to the title screen. Open the
PaddlesViewController.m implementation file and import the application delegate
so you have access to call its methods, specifically the showTitle method:

#import "PaddlesAppDelegate.h"

Computer Player Menu 181

Modify the code so when the alert view is dismissed, it will call the application
delegate showTitle method versus just creating a new game. Modify the
alertView:didDismissWithButtonIndex method so it appears as follows:

- (void)alertView:(UIAlertView *)alertView
 didDismissWithButtonIndex:(NSInteger)buttonIndex
{
 // message dismissed so reset the game and start animation
 alert = nil;

 // check if we should go back to title
 if ([self gameOver])
 {
 PaddlesAppDelegate *app = (PaddlesAppDelegate*)
 [UIApplication sharedApplication].delegate;
 [app showTitle];
 return;
 }

 // reset round
 [self reset];

 // start animation
 [self start];
}

Play the game again and make sure that it returns to the title screen after the
game finishes. Now you need to add back the previous pause/resume logic, but
this time you need to make sure that the game is actually playing. Obviously, if
the title screen is displayed, there is nothing to pause or resume:

- (void)applicationWillResignActive:(UIApplication *)application
{
 // pause the game if active
 if (self.gameController)
 {
 [self.gameController pause];
 }
}

Chapter 6: Computer AI182

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 // resume the game if active
 if (self.gameController)
 {
 [self.gameController resume];
 }
}

Make sure the pause/resume logic works by testing the screen lock on both the
title screen and game screen. You should notice that, when in the title view, the
pause and resume logic is ignored, and when playing the game, the game will
pause and resume correctly.

Now you have a new title screen and the buttons to specify whether you want to
play the computer player. Those buttons pass the computer value to the applica-
tion delegate, which then passes it into the paddle view controller by setting the
computer property. This allows the PaddlesViewController to know if the
computer should be controlling one of the paddles.

Computer Player
Now for the fun part: you get to design a computer player from scratch. I find this
to be the most interesting part of building any game, because you get the oppor-
tunity to model human behavior. How do you make a computer appear human?
Or maybe a better question to ask is how do you make the computer seem less
robotic? You will start this journey exactly the way I approached the problem, and
that is by first creating the most basic computer player possible.

basics
The most basic of computer players would simply just move the paddle around.
Nothing more than that. And because the Paddle object is already geared
to animate incremental steps of movement, it won’t be very difficult. In the
PaddlesViewController implementation, add the following method above the
animate method:

- (void) computerAI

Computer Player 183

{
 // move paddle1 to a random position within player1 box
 float x = gPlayerBox[0].origin.x + arc4random() %
 (int) gPlayerBox[0].size.width;
 float y = gPlayerBox[0].origin.y + arc4random() %
 (int) gPlayerBox[0].size.height;
 [paddle1 move: CGPointMake(x,y)];
}

The computerAI method will just pick a random spot within the player box to
move the paddle. Add the following code to the top of the animate function, so
that when the computer is playing, it will call the computerAI method:

 // check for computer player
 if (computer)
 {
 [self computerAI];
 }

Build and run, then select the Computer player button from the title screen. You
should notice that the paddle is now controlled by the computer, and it appears
to be moving it in a berserk fashion. This is because the paddle is assigned a new
position every frame of animation. This causes the paddle to shake very quickly
because the code does not allow the paddle to arrive at its destination before a
new random position is assigned. A quick fix to this is to monitor the speed of the
paddle, and only assign a new position if the paddle is not moving. Modify the
computerAI method to wait until the active speed of paddle1 has been reduced
to 0:

- (void) computerAI
{
 if (paddle1.speed == 0)
 {
 // move paddle1 to a random position within player1 box
 float x = gPlayerBox[0].origin.x + arc4random() %
 (int) gPlayerBox[0].size.width;
 float y = gPlayerBox[0].origin.y + arc4random() %
 (int) gPlayerBox[0].size.height;
 [paddle1 move: CGPointMake(x,y)];

Chapter 6: Computer AI184

 }
}

Now the movements of the computer paddle has been downgraded from ber-
serker to just a little crazy. At least the paddle now makes it to its destination
before picking another position. There is one small issue you might have noticed,
and that is you can still control the computer player’s paddle by touching the top
half of the screen. It’s not very fair to be allowed to interfere with the computer’s
paddle. You should only allow control over the top paddle when the computer is
not playing (computer == 0). Since the movement logic requires that a touch
be assigned to a paddle, you only need to focus on the touchesBegan method.
Modify the touchesBegan method to the following:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 // iterate through our touch elements
 for (UITouch *touch in touches)
 {
 // get the point of touch within the view
 CGPoint touchPoint = [touch locationInView: self.view];

 // if paddle not already assigned a specific touch then
 // determine which half of the screen the touch is on
 // and assign it to that specific paddle
 if (paddle1.touch == nil && touchPoint.y < 240 &&
computer == 0)
 {
 touchPoint.y += 48;
 paddle1.touch = touch;
 [paddle1 move: touchPoint];
 }
 else if (paddle2.touch == nil)
 {
 touchPoint.y -= 32;
 paddle2.touch = touch;
 [paddle2 move: touchPoint];
 }
 }
}

Computer Player 185

You have just created an extremely simple—but very dumb—computer player. I
want to take a step back in the next section and think about how to make a better
computer player.

human Model
Think about how you play the game of air hockey and all of the different deci-
sions and behaviors you will typically make. The easiest state to understand is that
of defense. You do not want the other player to score a point against you, so you
will position the paddle in a way that makes it more difficult for the opponent to
score. The next obvious state is offense, where you have the puck on your side of
the table and it is under your control. At this point you will try and hit a powerful
shot and hopefully score a point. I’ll dive into these states in a bit, but for now I
want you to think about a couple other states that might not be so obvious.

What about when the opponent has the puck and they aren’t really doing any-
thing? The opponent could be analyzing the board for the best shot possible.
Maybe they will be creative and put together an angle shot. Maybe they just want
to try for the best direct shot. What do you usually do when someone is holding
on to the puck? Just sit still and let them prepare their shot? Not usually. You will
move your paddle around into different positions so preparing for a good shot
becomes more difficult. You want them to just take the shot, and not spend a lot
of time preparing. Or maybe you are just bored and wished they would hurry up.
Either way, you’ll probably move your paddle around on the table. You already
have the code that randomly moves the paddle around, so this will become the
logic used in the bored state, as shown in Figure 6-6.

You also don’t start in an offense, defense, or bored state, but usually in a state
that makes a decision. Where is the puck? Should you go into defense or offense?
Do you just wait and see what the other player does? The board needs to be ana-
lyzed and a decision on what to do next needs to be made. And maybe you will
just decide to wait a little longer before a real decision is made. This will be the
state that the computer will always fall back on after going into one of the other
states. This will be the wait state for the computer. It will wait a random amount
of time and then make an informed decision about what state it will go into next.

Chapter 6: Computer AI186

figure 6-6. bored State

Define all the different states the computer can be in by adding an enumeration
into the PaddlesViewController header. Add the following line of code after
the import statements and before the interface definition:

enum { AI_WAIT, AI_BORED, AI_DEFENSE, AI_OFFENSE };

Add a state variable inside the interface definition that will keep track of the ac-
tive state the computer player is in. This will initially be set to 0, which is the
AI_WAIT state:

int state;

At the start of every round, you need to reset the computer state back into the
wait state. Add the following code into the reset method:

 // reset computer AI
 state = 0;

Computer Player 187

You will now create a basic implementation of the computer wait state. The first thing
you will check is if the paddle is moving. Once the paddle comes to rest, the computer
will start picking random numbers. Once the computer finds a specific number it
will take action. This is basically how you will make the computer wait. It will just
keep picking numbers until it gets the right one. Once it has picked the winning
number, the computer will then be allowed to make a decision. It doesn’t really mat-
ter what number it picks just as long as it is a specific one in the total range of random
numbers. I decided to check if the random value picked was the number 1, and if so,
the computer will decide on a new state to go into. For now, you will just have the
computer enter into the bored state, but later on you will expand it to all the different
states. Add the following to the top of the computerAI method:

 if (state == AI_WAIT)
 {
 // wait until paddle has stopped
 if (paddle1.speed == 0)
 {
 // pick a random number between 0 and 9
 int r = arc4random() % 10;

 // if we pick the number 1 then we go into a new state
 if (r == 1)
 {
 state = AI_BORED;
 }
 }
 }

Why do you have the computer picking random numbers? The computer can
obviously make quicker decisions than a human can, so you are making the com-
puter player waste a few cycles before it makes a decision on which state it should
go into. It also adds a bit of unpredictability to when the computer will enter a
new state. Adding unpredictability to computer logic is always good, as it makes it
more challenging for the player to figure out what the computer will do next.

Chapter 6: Computer AI188

Take the existing code that moves the paddle into a random position and make
that the implementation of the bored state. The code after the wait state logic
should be altered as follows:

 // computer is bored and moves to random position
 else if (state == AI_BORED)
 {
 if (paddle1.speed == 0)
 {
 // move paddle into a random position within the
 // player1 box
 float x = gPlayerBox[0].origin.x + arc4random() %
 (int) gPlayerBox[0].size.width;
 float y = gPlayerBox[0].origin.y + arc4random() %
 (int) gPlayerBox[0].size.height;
 [paddle1 move: CGPointMake(x,y)];
 state = AI_WAIT;
 }
 }

Now you should think about how the defensive state should be implemented.

defense
I already discussed that the defensive state should make it difficult for the other
player to score. But when does the computer take on a defensive position? Most
likely when the other player has control of the puck, and definitely when the puck
has been struck and is moving towards the top half of the table. What do you
usually do when you are playing defensive? A good defense position, just like in
soccer, is to put your paddle between the goal and the puck, as depicted in Figure
6-7. This prevents a straight-on shot making it difficult to get an easy point. It is
also smart to pull the paddle back a little toward the goal to reduce chances of an
angled shot, sneaking by the paddle. Pulling the paddle backwards can also help
cushion the puck if it hits the paddle, which will hopefully keep it on the side
of the table so you can then go into an offensive strategy. This logic will be the
AI_DEFENSE state for the computer player.

Computer Player 189

figure 6-7. Moving to a good
defensive position

You will modify the AI_WAIT state to check if the puck is moving towards the top
of the screen, and if so it will go into the AI_DEFENSE state. In the defensive state,
you will initially create unbeatable logic by placing the paddle between the goal
and the incoming puck. You will move the paddle along the y-axis to the halfway
point between the goal and the puck. You will also position the paddle in the
same x-axis position as the puck. Once the puck speed has slowed down enough,
the computer will go back to the AI_WAIT state.

 if (state == AI_WAIT)
 {
 // wait until paddle has stopped
 if (paddle1.speed == 0)
 {
 // pick a random number between 0 and 9
 int r = arc4random() % 10;

Chapter 6: Computer AI190

 // if we pick the number 1 then we go into a
 // new state
 if (r == 1)
 {
 // if puck is heading towards us at a good rate
 // then go into defense
 if (puck.speed >= 1 && puck.dy < 0)
 {
 state = AI_DEFENSE;
 }
 else
 {
 state = AI_BORED;
 }
 }
 }
 }
 else if (state == AI_DEFENSE)
 {
 // move to the puck x position and split the difference
 // between the goal
 [paddle1 move: CGPointMake(puck.center.x,
 puck.center.y / 2)];

 if (puck.speed < 1)
 {
 state = AI_WAIT;
 }
 }
 // computer is bored and moves to random position
 else if (state == AI_BORED) ...

Go ahead and play the game at this point, and you should notice that the com-
puter moves the paddle directly behind the puck when it goes into a defensive
state. This looks a little bit robotic, in that the paddle is placed at the exact same
location along the x-axis as the puck. I also noticed that sometimes the paddle
stays in defensive position too long, especially when the puck has bounced off the
paddle and is heading back towards the other goal. Let’s modify the code so that
it positions the paddle at an offset towards the center of the goal and also leaves

Computer Player 191

the defensive state once the puck is heading back the other direction. I decided to
offset the paddle toward the goal center by as much as the puck’s width. This will
help make the computer player look a little more natural. Modify the defensive
implementation to the following:

 // move to the puck x position and split the difference
 // between the goal
 float offset = ((puck.center.x - 160.0) / 160.0) * 40.0;
 [paddle1 move: CGPointMake(puck.center.x - offset,
 puck.center.y / 2)];

 if (puck.speed < 1 || puck.dy > 0)
 {
 state = AI_WAIT;
 }

The defensive strategy might be a little too good, as there really is no way to score
if the computer is in that state. The only chance you can score is if it takes it a re-
ally long time to make a decision or it just went into a bored state, giving you a
little time to make a shot. The game wouldn’t be fun if you couldn’t sneak a point
even when the computer was playing defense, and one solution is to tweak the
maximum speed that the paddle can move while in this state. This will allow you
to shoot the puck by the computer player even if it is playing solid defense. Add
the following line into the AI_DEFENSE logic:

 paddle1.maxSpeed = MAX_SPEED / 3;

You need to reset the maximum speed back to the default once you go back into
the wait state and the paddle has stopped moving. Add the following to the AI_
WAIT logic, right before the picking of the random number:

paddle1.maxSpeed = MAX_SPEED;

At this point the computerAI method should appear as follows:

- (void) computerAI
{
 if (state == AI_WAIT)
 {
 // wait until paddle has stopped
 if (paddle1.speed == 0)

Chapter 6: Computer AI192

 {
 paddle1.maxSpeed = MAX_SPEED;

 // pick a random number between 0 and 9
 int r = arc4random() % 10;

 // if we pick the number 1 then we go into a
 // new state
 if (r == 1)
 {
 // if puck is heading towards us at a good rate
 // then go into defense
 if (puck.speed >= 1 && puck.dy < 0)
 {
 state = AI_DEFENSE;
 }
 else
 {
 state = AI_BORED;
 }
 }
 }
 }
 else if (state == AI_DEFENSE)
 {
 // move to the puck x position and split the difference
 // between the goal
 float offset = ((puck.center.x - 160.0) / 160.0) * 40.0;
 [paddle1 move: CGPointMake(puck.center.x - offset,
 puck.center.y / 2)];

 if (puck.speed < 1 || puck.dy > 0)
 {
 state = AI_WAIT;
 }
 paddle1.maxSpeed = MAX_SPEED / 3;
 }
 // computer is bored and moves to random position
 else if (state == AI_BORED)
 {

Computer Player 193

 if (paddle1.speed == 0)
 {
 // move paddle into a random position within the
 // player1 box
 float x = gPlayerBox[0].origin.x + arc4random() %
 (int) gPlayerBox[0].size.width;
 float y = gPlayerBox[0].origin.y + arc4random() %
 (int) gPlayerBox[0].size.height;
 [paddle1 move: CGPointMake(x,y)];
 state = AI_WAIT;
 }
 }
}

Play the game with the new defensive state and you will notice it plays a much
better game of air hockey. It is now much harder to score against the computer
player. Even though the defense and bored states actually make for a better
computer player, there still seems to be something missing. The computer rarely
takes a shot unless it goes into the bored state and picks a random position on
the board that collides with the puck. An offensive state needs to be added so the
computer will go for the puck and take the shot when the time is right.

offense
What makes for a good offensive strategy? Maybe you try and find a good angle
shot that has a decent chance of getting in. Or maybe you just hit it as hard as
possible not allowing for the opponent to prepare for the shot. When do you take
the shot? Usually when you have control of the puck, which means, you wait until
the puck has slowed down where you can hit it with a little more accuracy. So the
computer should wait until the puck is on its side and not moving very fast before
it takes a shot. This will be the AI_OFFENSE state for the computer player.

That part of the strategy seems obvious, but then I started thinking about how
the computer should hit the puck. I pulled out a piece of paper and drew a few
ideas down that might make for a good strategy. What if I calculated every angle
that the paddle could hit the puck and simulate it out so the computer would
know where the puck ended up. From there, I could rate the results such that if
the puck scored a point it would rate that outcome higher than if a point wasn’t

Chapter 6: Computer AI194

scored. If the puck scored in your own goal then it could rate that very low. If you
hit the back wall near the goal then that could be ranked higher than just hitting
the player’s paddle. I wanted to create a list of shots that were ranked by how good
the shot resulted in. That would make for a pretty smart computer player, and
then you could scale it back from there.

I started coding this strategy up for offense, and it is one of the reasons I created
the Puck object, so it could be used to simulate out all the different possibilities.
The Puck object can be modified so it can track the current puck position without
using the view object. That way you could have multiple Puck objects that the
computer used for simulation, and they wouldn’t conflict with the current puck
image on the screen. That wouldn’t be a difficult modification and I initially went
down this path to see what would happen. My first issue was how do I perform
these calculations based on where the computer paddle is located. In order to get
the proper angle, the paddle has to be moved into position first, and if the puck
is moving then this information will get out of date quickly. I also assumed that
if every single angle that the puck could be struck was simulated, that it might be
too intense of a calculation and cause the game to lag. I needed a better solution
that didn’t require having to move the paddle into a specific angle to strike the
puck and didn’t require a lot of calculations.

My next idea was to pick a few random places that the paddle could hit the puck
and then simulate that out to make a good decision. This would reduce the num-
ber of calculations, and also not require that the puck be put into a better posi-
tion. You could just simulate it out from where the current puck and paddle were
located. I decided this approach was much easier to implement and I started cod-
ing it up. The puck and paddle objects were modified so they could be simulated
out without moving a view object. I ran a few tests and realized that the way the
simulation was done, by calling the animate method per each frame, was just too
slow to use for the computer simulations. You could tell when the computer ran
its calculations the frame rates dropped. There was too much going on inside the
animate method and it caused the game to lag. I needed an even simpler solution
that didn’t require a lot of processing power.

Sitting back in my chair, I decided my initial approach to offense was a horrible
first approach. I spent a lot of time building this huge complicated system that

Computer Player 195

required tons of calculations and processing power. Why would that be my step
one? That’s not how I typically code. I like to code in small increments so that I
can see actual progress along the way. I think maybe I was just excited to come up
with a really clever solution, rather than sticking to a simple approach that could
be built upon.

figure 6-8. offensive strategy

I painfully scrapped all my work and decided to think about using a simple solu-
tion. What is the absolute simplest method for an offensive strategy? Why not
just hit the puck? That certainly would be the easiest approach possible to run
with initially. All I needed to do was add to the decision logic so that if the puck
is on the computer’s side and the speed of the puck is slow enough, then it would
change into the offensive state. The offense state would just move the paddle to
the center position of the puck. It’s simple: let’s just hit the puck!

Modify the decision logic in the AI_WAIT state to include this logic for moving
into the offense state:

Chapter 6: Computer AI196

...
 // if we pick the number 1 then we go into a
 // new state
 if (r == 1)
 {
 // if puck is on our side and not moving fast
 // go into offense. if puck is heading
 // upwards with some speed go into defense.
 // otherwise get bored

 if (puck.center.y <= 240 && puck.speed < 1)
 {
 state = AI_OFFENSE;
 }
 else if (puck.speed >= 1 && puck.dy < 0)
 {
 state = AI_DEFENSE;
 }
 else
 {
 state = AI_BORED;
 }
 }
...

Now you will add in the logic to just hit the puck when in the offense state. After
you move the paddle to the puck’s position, you will go back into the wait state.
Add the following code to handle the AI_OFFENSE state:

...
 else if (state == AI_OFFENSE)
 {
 [paddle1 move: puck.center];
 state = AI_WAIT;
 }
 else if (state == AI_DEFENSE)
...

Now let’s build and play the game and see how the offensive behavior of just hitting
the puck works out. In my testing, I noticed that the computer will sometimes be in a

Computer Player 197

defensive position, block the puck, wait until the puck slows, and then strike it. That
was pretty cool to see, and it certainly appeared to have a human-like quality. On the
other hand, when the puck gets behind the computer paddle, it will just blindly hit
the puck in the wrong direction, sometimes sending the puck into the wrong goal.
That’s not a normal behavior and something you will fix a little later. Another prob-
lem that I noticed was sometimes the puck gets stuck in the corner for a little while,
and the computer keeps trying to hit it but it doesn’t move, so it hits it again, and so
on. This results in the paddle just sitting on top of the puck and since the puck has
nowhere to go, the paddle just keeps trying to hit it. If you haven’t seen this condi-
tion occur, you can recreate it by simply placing the puck in the top left corner each
round. Add the following code into the reset method to demonstrate the issue:

 // test puck trap issue
 viewPuck.center = CGPointZero;

Run the application again and you will see that sometimes the computer paddle gets
trapped in the corner with the puck. This means the game would get stuck in a state
where it could never finish, and that’s not good. You need for the computer to move
the paddle out of the way after it takes the shot. If you think about a human player,
they will usually strike the puck, and pull back anyway. You could easily add the logic
to move the paddle out of the way once it strikes it. Another way to solve the issue
would be to test for the intersection of both the paddle and puck at the start of the
AI_WAIT loop and then go into the AI_BORED state if that occurs. The objects usually
won’t be intersecting at the beginning of the computerAI method because the imple-
mentation of collision detection will reposition the objects so they are not overlap-
ping. This doesn’t always occur, however, because of the walls. So you could just
check in this method if they are intersecting and then go into a bored state to cor-
rect. Another quick solution is instead of going into the AI_WAIT state from offense
(which would result in going to offense again), you could set it to go directly into
the AI_BORED state so the paddle moves to a random position. I decided to go with
checking for intersection inside the AI_WAIT state, as it should offer the most protec-
tion against any type of trap condition. Add this to the top of the AI_WAIT logic:

 if (state == AI_WAIT)
 {
 // fix to handle computer trapping puck into the corner
 if ([paddle1 intersects: viewPuck.frame])

Chapter 6: Computer AI198

 {
 // go into a bored state so paddle moves to
 // random position
 state = AI_BORED;
 return;
 }
...

Test it again and you will notice that the computer paddle does in fact move away
from the puck when it gets trapped. You may have noticed that this condition
sometimes puts the computer paddle in position to score against itself. It might
make sense to create a new state so when this trap condition occurs you can
minimize the chances of this happening. I decided to focus on making the of-
fensive behavior a little bit smarter than just going right for the puck. In the end,
a smarter strike should help with the trap condition as well. Now that the trap
problem has been solved, go ahead ahead and remove the debug code to place the
puck in the top left corner.

Let’s focus next on this issue where the computer blindly strikes the puck even if
it is in front of it. In order to improve this, I want to make the offensive behavior
have two parts to it. The first part will position the paddle in a striking position,
and the second part will do the strike as it is coded now. Let’s add a new state
called AI_OFFENSE2 to the enum definition at the top of the header file:

enum { AI_WAIT, AI_BORED, AI_DEFENSE, AI_OFFENSE, AI_OFFENSE2 };

The striking of the puck will be set to AI_OFFENSE2, and you will add a new AI_
OFFENSE that moves the paddle into a random position behind the puck. This will
help set up a better shot by making sure the paddle is behind the puck. Modify
the offensive code to be handled in two parts as follows:

 else if (state == AI_OFFENSE)
 {
 // pick a new x position between -64 and +64
 // of puck center
 float x = puck.center.x - 64 + (arc4random() % 129);
 float y = puck.center.y - 64 - (arc4random() % 64);
 [paddle1 move: CGPointMake(x,y)];
 state = AI_OFFENSE2;
 }

Computer Player 199

 else if (state == AI_OFFENSE2)
 {
 if (paddle1.speed == 0)
 {
 // strike it
 [paddle1 move: puck.center];
 state = AI_WAIT;
 }
 }

Play the game and notice that the computer now sometimes hits an angled shot
rather than just going straight for the puck. This makes it much more difficult to
predict where the computer will take the shot. Another thing you may have no-
ticed is the computer usually hits the puck before you do at the start of the round.
This isn’t very fair since you might have just dismissed the message dialog to start
the game and may have not even have grabbed your paddle yet. It would be great
if the computer would delay the first hit until you started moving your paddle, or
at least wait a random amount of time before taking the initial shot. Let’s add a
new starting state that will handle this logic. Add the AI_START state to the begin-
ning of the enumeration so that the computer player will always start in this state
at the beginning of every round:

enum { AI_START, AI_WAIT, AI_BORED, AI_DEFENSE, AI_OFFENSE,
 AI_OFFENSE2 };

Now let’s add starting logic that waits a random amount of time before going into
the AI_WAIT state. It will also go into the AI_WAIT state if it notices the player’s
paddle has moved, which is reported when the player’s paddle speed is greater
than 0. Add the following logic to the top of the computerAI method before the
AI_WAIT logic:

 if (state == AI_START)
 {
 if (paddle2.speed > 0 || (arc4random() % 100) == 1)
 {
 state = AI_WAIT;
 }
 }
 else if (state == AI_WAIT)

Chapter 6: Computer AI200

...

There are now 6 different computer states, which makes it difficult to know the
active state the computer is currently in. You could modify each state handler and
write a log message that tells you when the computer enters a new state. However,
the states can change pretty quickly, making it difficult to keep an eye on both the
computer’s behavior and the current state. If you played it on device it would be
even more difficult, as you can’t really look at two different screens at the same
time. In order to solve this, you will add a debug label to the top of the screen to
display the active computer state.

Using interface builder, modify the PaddlesViewController.xib interface file and
put a label at the top of the screen, as shown in Figure 6-9. Make sure the width is
the size of the goal box, text color is black, and the alignment is centered. Create
a property for the label and name it “debug.” Now you will modify each state
handler to update the label so the computer state is displayed on the screen. This
will help validate all the current logic, and if you decide to add more states to the
computer logic, it will help for that purpose, too.

figure 6-9. debug label

Computer Player 201

Here is the entire computerAI function with the debug label updated:

- (void) computerAI
{
 if (state == AI_START)
 {
 debug.text = @"START";

 if (paddle2.speed > 0 || (arc4random() % 100) == 1)
 {
 state = AI_WAIT;
 }
 }
 else if (state == AI_WAIT)
 {
 // fix to handle computer trapping puck into the corner
 if ([paddle1 intersects: viewPuck.frame])
 {
 // go into a bored state so paddle moves to
 // random position
 state = AI_BORED;
 return;
 }

 // wait until paddle has stopped
 if (paddle1.speed == 0)
 {
 debug.text = @"WAIT";

 paddle1.maxSpeed = MAX_SPEED;

 // pick a random number between 0 and 9
 int r = arc4random() % 10;

 // if we pick the number 1 then we go into a
 // new state
 if (r == 1)
 {
 // if puck is on our side and not moving fast

Chapter 6: Computer AI202

 // go into offense. if puck is heading
 // upwards with some speed go into defense.
 // otherwise get bored
 if (puck.center.y <= 240 && puck.speed < 1)
 {
 state = AI_OFFENSE;
 }
 else if (puck.speed >= 1 && puck.dy < 0)
 {
 state = AI_DEFENSE;
 }
 else
 {
 state = AI_BORED;
 }
 }
 }
 }
 else if (state == AI_OFFENSE)
 {
 debug.text = @"OFFENSE";

 // pick a new x position between -64 and +64
 // of puck center
 float x = puck.center.x - 64 + (arc4random() % 129);
 float y = puck.center.y - 64 - (arc4random() % 64);
 [paddle1 move: CGPointMake(x,y)];
 state = AI_OFFENSE2;
 }
 else if (state == AI_OFFENSE2)
 {
 debug.text = @"OFFENSE2";

 if (paddle1.speed == 0)
 {
 // strike it
 [paddle1 move: puck.center];
 state = AI_WAIT;
 }
 }

Computer Player 203

 else if (state == AI_DEFENSE)
 {
 debug.text = @"DEFENSE";

 // move to the puck x position and split the difference
 // between the goal
 float offset = ((puck.center.x - 160.0) / 160.0) * 40.0;
 [paddle1 move: CGPointMake(puck.center.x - offset,
 puck.center.y / 2)];

 if (puck.speed < 1 || puck.dy > 0)
 {
 state = AI_WAIT;
 }
 paddle1.maxSpeed = MAX_SPEED / 3;
 }
 // computer is bored and moves to random position
 else if (state == AI_BORED)
 {
 if (paddle1.speed == 0)
 {
 debug.text = @"BORED";

 // move paddle into a random position within the
 // player1 box
 float x = gPlayerBox[0].origin.x + arc4random() %
 (int) gPlayerBox[0].size.width;
 float y = gPlayerBox[0].origin.y + arc4random() %
 (int) gPlayerBox[0].size.height;
 [paddle1 move: CGPointMake(x,y)];
 state = AI_WAIT;
 }
 }
}

In the next section, you will add different levels of difficulty to the computer player.

Chapter 6: Computer AI204

Computer difficulty
You will now create easy, medium, and hard difficulty levels for the computer
player. The way I like to approach the computer difficulty is to adjust the charac-
teristics of the existing logic to make it easier or harder. A lot of times, you can
just tweak the numbers behind the logic itself. It also helps to have the difficulty
setting as a numeric value, such as an integer, so you can use it directly in the
equations for computer behavior. You probably remember that the computer
property is currently an integer and not just a Boolean or string value. The reason
was so you could easily add support for difficulty without having to change much,
especially within the interface itself.

The title view currently has two buttons to pick between computer or two-player
mode. You are using the same method to handle both selections, with the only
difference being that the Tag variable of the button is 0 for two players and 1 for
computer. You can just set computer difficulty using the same method by chang-
ing the computer player button to be three buttons. Each computer button will
have an incrementing Tag value for difficulty. You will assign a Tag value of 1 for
easy, 2 for medium, and 3 for hard. The great thing about this is you can use the
exact same onPlay handler. The value of the tag property is simply passed along
to the application delegate, and then to the PaddlesViewController, so no extra
coding will be required.

Open up the PaddlesViewController.xib file and copy and paste the Computer
button twice. Rename the Computer button labels to say “Easy,” “Medium,” and
“Hard,” and lay them out as shown in Figure 6-10. Using the Attributes Inspector,
set the Tag property for the Easy button to 1, Medium button to 2, and Hard but-
ton to 3. And that is all you have to do, as the action outlet was copied to the new
buttons. How simple was that?

Computer difficulty 205

figure 6-10. Computer difficulty-level buttons

All of the buttons should continue to work with the computer difficulty buttons
just playing against the current computer logic. The only difference is now the
computer property represents more than just that the computer is playing, it also
includes how difficult the computer player should be. You can probably think of a
few things that you can do to scale the difficulty of the computer, such as slowing
the paddle down or delaying how long it takes the computer to make a decision.
You will use those techniques and a few others to give a different playing experi-
ence for each level picked. I will now tackle each computer state, one at a time,
and tweak it to use the computer property to scale difficulty.

Look at the AI_START state and see what could be adjusted for computer diffi-
culty. It makes sense to have the harder computer player come out of the starting
state faster than the easy player. It currently picks a random number to decide
when to move into the AI_WAIT state, so you could reduce the total amount of
numbers that it picks from to speed things up on average. Modify the start condi-
tion to be as follows:

 if (state == AI_START)

Chapter 6: Computer AI206

 {
 debug.text = @"START";

 if (paddle2.speed > 0 ||
 (arc4random() % (100/computer)) == 1)
 {
 state = AI_WAIT;
 }
 }

Notice that all I’m doing is dividing the available pool of random numbers by the
computer property. No need to worry about division by zero (which would crash
the program) since computer will always be 1 or greater in this method. Now
when you are playing easy mode, it will use 100 as the value, medium will use 50,
and hard will use 33. You can hopefully see why it’s nice to keep difficulty as a nu-
meric value, so you can very easily integrate the value within the computer logic.
You could easily have had a whole series of conditional statements checking if you
were playing easy, medium, or hard, and then providing completely different logic
for each one. But hopefully you will agree that this is a much simpler approach
and ultimately leads to less code. And less code means fewer bugs.

Let’s look at the AI_WAIT code now and see what can be adjusted. Just like you did
for the start condition, you can adjust the total pool of random numbers to pick
from so the computer will make quicker decisions when playing the harder levels.
You are currently picking from a total of 10 numbers. If you divide that number
by the computer level like you did before, that would result in 10, 5, and 3 for
easy, medium, and hard, respectively. I decided to use 12, 8, and 4 instead, so that
the medium and hard levels were not drastically more difficult. I also felt that the
easy level could be a little slower at making decisions than the current computer
behavior. Modify the range of random numbers to the following:

int r = arc4random() % ((4 - computer) *4);

The next part of code you want to modify is when to go into the offensive state.
You probably have noticed when playing the game that it takes a while for the
computer to strike the puck. This is because it waits until the puck is almost
stopped. The computer player would be more difficult if you allowed it to take a
shot when the puck was travelling at faster speeds. This would increase the speed

Computer difficulty 207

at which the computer takes shots, which ultimately means the gameplay will be
faster. You will modify the minimum puck speed requirement of 1 to be the com-
puter level. This means that the puck speed will have to be less than 1 for easy,
less than 2 for medium, and less than 3 for hard level. Another change you can
make is when you are in easy mode, you could skip the AI_OFFENSE state, and
go straight into AI_OFFENSE2 so it takes the shot. This means easy mode will not
reposition the paddle before taking the shot, so it will be more predictable and
make more mistakes. The medium and hard levels will continue to reposition the
paddle randomly behind the puck by going into the AI_OFFENSE state. Change
the offensive decision code to the following:

...
 if (puck.center.y <= 240 && puck.speed < computer)
 {
 if (computer == 1) state = AI_OFFENSE2;
 else state = AI_OFFENSE;
 }
...

Let’s take a look at the AI_OFFENSE state and see what can be modified. This state
positions the paddle randomly behind the puck before it strikes. You just modi-
fied the code so that only medium and hard levels use this state. When not play-
ing the hard level, let’s slow down the paddle movement to half of the max speed.
Modify the offense-state code as follows:

...
 else if (state == AI_OFFENSE)
 {
 debug.text = @"OFFENSE";

 if (computer < 3) paddle1.maxSpeed = MAX_SPEED / 2;

 // pick a new x position between -64 and +64
 // of puck center
 float x = puck.center.x - 64 + (arc4random() % 129);
 float y = puck.center.y - 64 - (arc4random() % 64);
 [paddle1 move: CGPointMake(x,y)];
 state = AI_OFFENSE2;
 }

Chapter 6: Computer AI208

...

The AI_OFFENSE2 state strikes the puck at maximum speed. Modify it so that
only the hard level hits the puck at max speed. You will set the easy level to only
strike at 1/2 the max speed and change medium level to strike at 3/4 of max
speed. Modify the code as follows:

...
 else if (state == AI_OFFENSE2)
 {
 debug.text = @”OFFENSE2”;
 if (computer == 1)
 {
 paddle1.maxSpeed = MAX_SPEED / 2;
 }
 else if (computer == 2)
 {
 paddle1.maxSpeed = MAX_SPEED * 3/4;
 }
 // strike it
 [paddle1 move: puck.center];
 state = AI_WAIT;
 }
...

The AI_DEFENSE state positions the paddle between the goal box and the puck.
Modify the code so that it moves the paddle into position faster for the medium
and hard levels. You will keep the easy level at 1/3 of maximum speed, and then
adjust medium to 2/5 and hard to 1/2 of max speed.

...
 else if (state == AI_DEFENSE)
 {
 debug.text = @”DEFENSE”;
 // move to the puck x position and split the difference
 // between the goal
 float offset = ((puck.center.x - 160.0) / 160.0) * 40.0;
 [paddle1 move: CGPointMake(puck.center.x - offset,
 puck.center.y / 2)];
 if (puck.speed < 1 || puck.dy > 0)
 {

Computer difficulty 209

 state = AI_WAIT;
 }
 if (computer == 1)
 {
 paddle1.maxSpeed = MAX_SPEED / 3;
 }
 else if (computer == 2)
 {
 paddle1.maxSpeed = MAX_SPEED * 2/5;
 }
 else if (computer == 3)
 {
 paddle1.maxSpeed = MAX_SPEED / 2;
 }
 }
...

The AI_BORED state picks a random position within the player box and moves the
puck into it. You can change the paddle speed to make it take longer to move to
the random position, which of course makes it easier to allow the player to sneak
a shot into the goal. You can also make the rectangle that is used to pick that ran-
dom position to be smaller and closer to the goal box. This will make the position
selected more defensive and more difficult to score against. Modify the handling
of the bored state to be as follows:

 else if (state == AI_BORED)
 {
 if (paddle1.speed == 0)
 {
 debug.text = @"BORED";

 // change paddle speed based on level
 paddle1.maxSpeed = 3 + computer;

 // inset the rectangle if medium (20) or hard (40)
 int inset = (computer - 1) * 20;

 // move paddle into a random position within the
 // player1 box

Chapter 6: Computer AI210

 float x = (gPlayerBox[0].origin.x + inset) +
 arc4random() %
 (int) (gPlayerBox[0].size.width - inset*2);
 float y = gPlayerBox[0].origin.y +
 arc4random() %
 (int) (gPlayerBox[0].size.height - inset);

 [paddle1 move: CGPointMake(x,y)];
 state = AI_WAIT;
 }
 }

You now have three different computer players each with different characteristics.
Play the game on each level and take notice of the current computer state and
the movements that the computer player makes. Hopefully you will find that it
is easier to win on the easy level, and that the hard level gives you a pretty good
challenge. If that is not the case then you can always go back and make adjust-
ments to the numbers. There is no right answer but I encourage you to let others
determine if the game is difficult or not. As the developer, you know the code
behind the game, so it can be difficult to judge if things are easy or not. Always let
others play the game and get as much feedback as possible before launching it in
the App Store. Chances are your friends will bring up the same concerns as others
who download your game. It is best to come out of the gate with the best product
possible.

Once you are satisfied with the computer logic, you should take out the debug
message at the top of the screen. You could remove it completely, although you
may want to use it again in the future, so let’s just make it invisible instead. If you
ever want to add more computer states or even adjust the current implementa-
tion, using the debug message can be an invaluable tool. In order to make the
message invisible, add the following to the viewDidLoad method:

debug.hidden = YES;

You now have a completed iPhone game that supports both two-player and com-
puter modes. The computer mode supports multiple difficulty levels that you can
progress through. All that is left is submitting it for review and hopefully getting
it approved for distribution in the App Store. I’ll cover that in the next chapter.

Computer difficulty 211

Chapter 7: App Store212

7
App Store

I will walk you through the process of submitting your application to the App
Store. There have been numerous improvements to the iTunes Connect website
since it was first introduced. The process has gotten a lot easier to submit an ap-
plication, and now there are many automated checks that validate your submis-
sion immediately. The longest part of this entire process, outside of waiting for
your application to get reviewed, is creating all the screenshots and coming up
with a description of your application. Once that has been done, the actual sub-
mit process is very simple and won’t take long. I will also discuss things you can
do after your application has been approved that will help drive more downloads.
Before we get to that, I will walk you through submitting your first application.

Screenshots
I want you to take a few compelling screenshots of your application. You could
do this using the iPhone Simulator on the Mac, but I find the easiest method is
to use the device itself. Screenshots can be taken on the device by holding down
the screen lock button and pressing the home button at the same time. You will
see the iPhone screen flash and a photo of whatever was on the screen will be
dropped into your Camera Roll. I suggest taking a lot of different screenshots,
making sure to show the unique parts of your game. The first screenshot is the
most important; it should be a good action shot from the game. My first screen-
shot, shown in Figure 7-1, is of a game in progress with an active score. You can
then add other screenshots, such as the title screen, which would show all the dif-
ferent options of play for the air hockey game. Anything that looks good and will
help the customer make a buy decision.

Screenshots 213

If you use the Simulator to take a screenshot, you can use the keyboard
shortcut Command-Shift-4, press the space bar, and then click on the
Simulator window. This will grab the entire contents of the Simulator, in-
cluding the iPhone graphic, and save it as an image on the Desktop. This
image will work great on your website but will need to be cropped to the
actual device screen size for the App Store. Just use your favorite photo edi-
tor and crop out the Simulator screen contents to the correct dimensions
mentioned below.

 figure 7-1. Air hockey screenshot

Chapter 7: App Store214

You are allowed to have five screenshots for each application, so try and take that
many if possible. If you can’t come up with enough unique types of screenshots
it’s okay; you don’t need to use them all. It is a requirement to have at least one
though. Remember, most people go right to the screenshots to decide if they will
buy your game or not, so it is important to put your best shots first. The screen-
shots can be the standard resolution of 320×480 or the Retina display high resolu-
tion of 640×960. The screenshots can be in either portrait or landscape orienta-
tions. If your game supports Retina display it is best to use that format. I always
use my iPod 4th generation or iPhone 4 to take the screenshots, so the resulting
images will be high resolution. If you use an older device, you will be limiting
yourself to the standard resolution.

Once you have taken all your screenshots, transfer them over to your Mac using
software such as the free iPhoto. I usually create a new album with the same name
as the game and import all the photos from the device there. I have recently been
using the Dropbox iPhone app to quickly get the photos off the device and into a
folder on my computer. Once all the photos have been grabbed off the device, go
through each one, and decide the order that you want to publish them in. Try and
tell a story with your screenshots, something that will grab your audience. Or you
can just order them by the most impressive looking screenshots first. Sometimes
it is good to put captions along with your screen shots, just to highlight key fea-
tures of the game. Again, most people browse screenshots first to see if they are
interested and then read the description.

I rename my photos prior to submitting so I know the exact order to upload
them to iTunes Connect. For example, AirHockey1–5.png would tell me to submit
AirHockey1.png, followed by AirHockey2.png, and so on. Try and keep everything
organized, as you will most likely need these photos again.

Screenshots 215

Creating the Application description
and Keywords
Open up your favorite text editor or word processing application and create a
new document. I usually use Microsoft Word, so I get the benefits of spelling and
grammar checks against the application description and keywords. You could
go straight to iTunes Connect and type this information in, but it usually takes a
while to come up with something good and you don’t want your web session tim-
ing out on you. You will probably also use the description and keywords on your
own website, so it’s good to keep a local copy.

The first thing you will need to decide is what is: the name of your game? The
name has to be unique from all other apps in the App Store. The best thing to
do is to first search the iTunes App Store and see if the name you want is already
taken. You will also need to make sure that you name it something that is not
trademarked by another company. You should also search Google for the name,
as well as the United States Patent and Trademark Office (www.uspto.gov) website.
You want your game to be unique so that people can easily find it. The application
name is indexed when searching for apps within the iTunes App Store.

Now let’s work on the application description, which is the text that a customer
first reads when they pull up your application in iTunes. This field is not search
indexed inside of iTunes, so this is merely a way to convey to the potential cus-
tomer exactly what your game does and why they should buy it. The desktop ver-
sion of iTunes displays the first 3 lines of the application description and collapses
the rest. On the device, I typically only read the first paragraph and then scroll to
the screenshots. This is why the first few sentences are very important. Try to grab
the customers attention in the first sentence. I wrote this as my first paragraph for
Air Hockey:

now you can carry the game of Air hockey in your pocket! Includes
realistic game play, intuitive multi-touch controls, and it’s free.
Play head-to-head with a friend or challenge the computer with
multiple difficulty levels. hear the puck smack against your paddle,
watch it glide with realistic physics, and feel the excitement as the
puck drops into your opponent’s goal.

Chapter 7: App Store216

Keep the application description honest and only mention features that are cur-
rently supported in the game. It is important not to mention pricing information
in the application description, as Apple will most likely not approve it. This is
because pricing information is converted to the local currency of the iTunes user,
so if you said “ONLY $0.99,” then that wouldn’t match what someone in the UK
would see on the purchase button. It is okay to say “free” or “free for a limited
time,” which might help get more customers playing your game before charging a
price for it.

The next data you will need are the keywords, which are extremely important.
Keywords, along with application name, are used when someone searches iTunes.
You should pick good keywords that will help users find your application. The
App Store, when it first opened, used the application description for search
matching, but this was quickly abused. People would throw in tons of keywords
that didn’t even match what the application did. Apple then made a change to not
index the application description and required developers to supply keywords
that were limited to 100 characters. This doesn’t allow you to add a ton of key-
words so you have to choose wisely. Each keyword is also separated by a comma
and you don’t need to include spaces. The commas also count towards the maxi-
mum character limit. You might find it useful to use a character counter so you
can make sure you are using the most characters possible. There are many avail-
able online that allow you to paste in the keywords and get the total count. It is
really important to submit as many keywords as iTunes Connect will allow.

A great resource for helping you find good keywords is google Adwords
(https://adwords.google.com/). Although this is the website that allows
you to advertise within google search results, it includes a keyword op-
timization tool that helps you find keywords people use when searching
for certain terms. I find it to be an extremely useful tool for finding popu-
lar keywords and it doesn’t cost you anything to use the tool. what are
people searching for when they want to find “Air hockey”? The google
keyword optimization tool can answer that.

Creating the Application description and Keywords 217

Always spell check your work, as a poorly written description might make people
think your game is also poorly written. Save the document in a location along
with all your screenshots because you will most likely need all of this for your
own website.

Submitting Metadata to iTunes Connect
Now that you have the screenshots, application description, and keywords, you
can go ahead and submit that information to Apple. The iTunes Connect website
(https://iTunesConnect.apple.com/) is where you submit all the information that
iTunes needs to allow people to find your application. It also manages your con-
tracts, tax, and billing information, which are required if you are charging money
for your app. In addition, it provides sales information of your app once it is
available for download in the App Store.

Log in to iTunes Connect and click Manage Your Applications. This is the screen
that allows you to update existing applications and add new ones. Click the Add
New App button to start the process of submitting the app information. This
brings you to a screen that asks for the App Name, SKU Number, and Bundle ID.
The App Name needs to be unique and cannot be longer than 255 bytes. You will
be told if the name is not unique when you submit. I always do a few searches on
iTunes to see if others have similar names. This doesn’t always work though, as
developers can sit on a name for up to 90 days before actually submitting it to the
store.

registering an application name before actually submitting the applica-
tion is a good idea because it gives you time to promote the name of
the application before it actually hits the store. once the application
name is registered then nobody else can register it for the next 90 days.
Make sure you know the application can be submitted in this time frame,
because if it is not then your time will expire and you will not be able to
register that name again.

Chapter 7: App Store218

The SKU Number is a unique number that you have to assign to the application.
Although it asks for a number, you can use letters as well, and I typically use the
application name in all caps with underscores if necessary. For example, if I was
submitting the application named “Air Hockey” I would use “AIR_HOCKEY” for
the SKU number. This is the only piece of metadata that you cannot change later,
as it is only used internally and on sales reports. The value is never displayed to
the customer.

The Bundle ID is a drop-down box that allows you to select any App ID you cre-
ated in the iOS Provisioning Portal. In my case, I had registered a wild card App
ID of “com.toddmoore.*” that allows me to submit multiple apps with the same
App ID. This does not allow for Apple Push Notification services or Game Center
support, so if you need those features you will have to create a specific App ID for
the application. Once you create the App ID it will be available in the drop-down
box. Since I selected a wild card App ID, I have to add an additional Bundle ID
suffix to make it unique. This needs to match the same bundle ID that was used
when the Xcode project was created. In my case, I used “AirHockey” as the suffix,
which sets the full Bundle ID to “com.toddmoore.AirHockey” ...and that matches
what was used in the project.

Now that this information has been entered, click the Continue button and see
if there are any issues. You will be presented with any errors that are discovered,
such as “The App Name you entered has already been used.” This error was pre-
sented to me when I attempted to use the name “Air Hockey,” because somebody
else had already taken the name. I tried a few variations, such as “Air Hockey
Free,” “Air Hockey Pro,” and “Air Hockey Extreme,” but they were all taken. I
decided to add the name of this book to the end, making the application name
“Air Hockey: Tap, Move, Shake”—which is probably a better title anyway because
the app will be displayed if someone searches for this book in iTunes.

The next screen allows you to set the Availability Date and Price Tier. I usually
set the availability date to be a month into the future. Once the application is ap-
proved, I will go in and modify it to the day I want it released. There was a time
that having a date set to a date in the past would cause your application to be
pushed further down in the Release Date list on iTunes. This made it more dif-
ficult to be found and you wouldn’t get a nice first day spike from people finding

Submitting Metadata to iTunes Connect 219

your app in this list. It appears Apple has finally fixed the issue, so going with an
older date shouldn’t put you at a disadvantage, it will just release your application
as soon as it is approved.

You can select a price for your application or make it free. In my case, I’m going
to make this game free so anyone can play it and see if it is something they would
like to learn how to build. If you want to charge money for your game, you need
to select a Price Tier. These tiers currently range from $0.99 to $999.99 for the US
market. Click on the Pricing Matrix link to see how each tier maps to a price and
the proceeds you will receive, which works out to be 70% of the sale. I recom-
mend sticking to a lower amount such as $0.99 or $1.99 for iPhone games. The
App Store’s Top Paid category is based on sales and not revenue, so if you ever
want your application to reach the top charts, it usually has to be priced cheap so
it can compete for a ranking. There is a Top Grossing category that is based on to-
tal revenue and shows who is making the most money in the App Store. This is an
interesting category because it shows that developers are making money releasing
free apps that contain in-app purchasing ability. It’s always a good idea to visit the
App Store and see which apps are making the most money. It might help you de-
cide on what kind of game or app to build if you have a bunch of ideas. Click the
Continue button to submit this information and go to the next screen.

The Version Number needs to be specified next. If you had already published
your game somewhere else, for example in the Mac App Store, and it is based
on the same source code or feature set then you will probably use the same ver-
sion. If this is your first version, assigning it 1.0 is usually what I specify. You can
always update your application down the road but you will have to increase the
version number, such that it is higher than the previous. For example, if you sub-
mitted version 1.0, you could then submit an update called 1.1 or even 1.0.1.

When updating an application, it is useful to follow a format that conveys how ma-
jor of an update it is. I use the format MAJOR.MINOR.REVISION, where the MAJOR
digit is only increased when major functionality is added to the app. Increasing
the MINOR digit implies new minor features have been added. An increase to the
REVISION digit is done only to fix bugs with the current version. This is how I
implement my version scheme and it has worked well for me, but you can choose
to implement something different, as long as one of the numbered digits has in-

Chapter 7: App Store220

creased in value. If you change multiple digits then the highest digit changed needs
to be increased. For example, you can submit a 3.1.2 upgrade to version 3.0.5 since
the second digit increased from 0 to 1. You could also go from version 3.1.2 to 4.0,
which would imply a major upgrade from version 3 to 4.

Let’s take a simple example where you submitted version 1.0 of Air Hockey with
only two-player support. The next release added a computer player, which is a
big enough feature that would be worthy of a 2.0 release. You then followed that
version with different computer difficulty levels and called it a 2.1 release. After
publishing that version, you realized you had a small bug that needed fixing. You
then submitted a 2.1.1 release to address the glitch, which is appropriate because
this version only fixes bugs and doesn’t add any additional features.

Now fill in the rest of the following metadata:

• Description: Just paste in the application description that you already typed
up. This is not a rich text editor, so the text cannot be formatted using differ-
ent fonts or styles such as bold and italics. Just make sure the text you pasted
into the field maintains the hard returns after each paragraph.

• Primary Category: Select Games and pick two subcategories. I selected
“Sports” and “Family” for this game but you can pick anything you want.

• Secondary Category: This category is only used for when people are search-
ing iTunes within a specific category. I selected “Entertainment” as my sec-
ondary category. The application will not be listed in this category and is only
viewable if people are searching (not browsing) the category. The primary
category is much more important.

• Keywords: Paste in the keywords you already selected in the previous section.
It is limited to 100 bytes so you might get an error if you exceed this amount.
If so, you will need to start deleting keywords that are less important until
you are below the limit.

• Copyright: I set my copyright for Paddles and Air Hockey to be “2011 Todd
Moore.” If you have registered as a company, then you would want to use the
name of that entity.

Submitting Metadata to iTunes Connect 221

• Contact Email Address: It is best to set up a different email address than your
personal email. I used support@toddmoore.com for this purpose. This email
address will be listed on a lot of websites, so it will receive a lot of spam.

• Support URL: This should be your website. I used http://toddmoore.com/ and
that is where people can get in touch with me.

• App URL: This is optional but it is a really good idea to include it. Many web-
sites scrape the iTunes listings and publish all the links on their site. This will
help improve your website ranking within search engines. I used http://tod-
dmoore.com/book/ as my URL.

• Review Notes: You can pass along any messages to the person who is review-
ing your application at Apple. If your app requires an account login, you need
to pass along demo credentials so the reviewer can login. You can also pass
along tips or cool things that the reviewer should check out. If you put in an
easter egg into your game, you will need to let the reviewer know how to ac-
cess it.

• Rating: I selected None all the way down, which gives an age ranking of 4.
This is what decides if devices with age restrictions set by parents can down-
load your app. Apple reserves the right to tweak these values.

• EULA: If you need to create your own End User License Agreement, you can
add that to this section. If you do not provide one then the standard EULA
gets applied to your application. I am not submitting a custom EULA and
have always used the standard EULA provided by Apple. If you are including
libraries that require separate licensing then you can add that here.

• Uploads: Click the Choose File button for the Application Icon and select the
large 512×512 icon that was created in Chapter 3, the graphics chapter. Now
add all the screenshots you created in the previous section under the iPhone
and iPod touch Screenshots. You are not submitting a universal app but if
you were then you would also have to attach iPad Screenshots.

Click the Save button and your application metadata is now saved in draft form.
You can always pull this information back up and edit it before you submit the
application , as shown in Figure 7-2. The application will now be in a new state

Chapter 7: App Store222

called “Prepare for Upload,” which is what you will do next. If you are going to
submit your application later, then you are done. When you are ready to sub-
mit, you will have to open the application information page up again, click View
Details for the current version, and then press the Ready to Upload Binary but-
ton. This puts the application entry into a “Waiting for Upload” state, which al-
lows the app to be archived and submitted for review.

 figure 7-2. editing app metadata

Submitting Metadata to iTunes Connect 223

Archive and Submit
Archiving the application allows you to submit it to iTunes Connect or share with
others. The process builds the application in release mode, which results in faster
code. Up until this point you have been running the application built for debug-
ging. The final version of your application will not include debug symbols and it
will be optimized, making it faster. When the compiler optimizes code, it creates
a completely different binary that can result in different application behaviors. For
this reason it is extremely important that you always test out the release build of
your application on a device before submitting to the App Store.

In order to build in release mode you will need to edit your current
scheme. Select Product→edit Scheme and for the run action change the
build configuration from debug to release. If you build with that con-
figuration, it will result in running the app with the same configuration
used for submitting to the App Store. Make sure to test all aspects of
your application to ensure all features work as they did in debug mode.

Once you have completed testing, select Product→Archive to build and zip the ap-
plication so you can submit to the App Store. This will bring up Organizer, which
allows you to access all the archives you have created per application. You can
always access the Organizer by selecting Window→Organizer from Xcode. Once
the archive has been built and selected inside the Organizer, you have the option
to validate or submit to the iTunes Connect website, as shown in Figure 7-3.

You should validate the application first so that iTunes Connect can run a series of
automated tests against the application binary. You will be prompted to enter your
iTunes Connect credentials, followed by the appropriate signing identity, which will
be the same App Store certificate you used to sign the target. This doesn’t mean your
application will be approved or accepted, but it at least lets you know the application
is not missing anything important like a properly sized icon. If it fails validation, you
will receive an error and a description of how to fix it. If you need more information,
you can always Google the error returned and usually you’ll find other developers
who had the same problem and a solution for how to fix it.

Chapter 7: App Store224

 figure 7-3. Xcode organizer

Now that your application has passed validation, it is time to submit to iTunes
Connect. Just follow the same procedure you used for validating the application
but this time choose Submit versus Validate to kick off the process. Enter all the
same information, including the iTunes Connect credentials and your App Store
certificate. Once the submission has been uploaded, you will be notified if the bi-
nary has been rejected or is waiting for approval.

If your binary is rejected, you will have to resubmit and fix whatever errors were
reported. The most common reason rejection occurs is not using the correct cer-
tificate for App Store distribution. If this happens to you go back into your project
and make sure the project target build options have the correct App Store signing
certificate specified for release mode.

Archive and Submit 225

App review
The application review involves an engineer at Apple reviewing your application
on an iOS device. I have lost count how many times a new application or applica-
tion update was rejected. I think I’ve been rejected for about every reason on their
checklist. So don’t feel bad if your first attempt ends in failure because there is a
lot to know. The good news is games are usually a lot easier to get through the
review process, as you have creative freedom when it comes to your interface. If
you’re building an application based on the standard UI controls, such as table
views, navigation controllers, and stock buttons, then your app will be reviewed
so it meets Apple’s Human Interface Guidelines. This document can be accessed
within the Xcode documentation and on the Apple developer website. I highly
recommend reading it over, especially if you are creating regular applications.

The most common reason they deny applications, according to Apple, is because
the app fails to launch. There are many reasons for why your application could
crash right at startup during the application initialization process. Maybe you
are using a feature that isn’t available on the hardware or iOS version they are us-
ing. Maybe your application does too many object allocations at startup, which
consumes too much memory and the app gets killed. One test they always run
is making sure your application starts up in Airplane Mode. If your application
requires an Internet connection, you have to make sure those functions do not
crash the application when the Internet is unavailable.

I have compiled a few of my own rejections, which should help prepare you for
the worst.

dear developer,

your application, Card Counter, cannot be posted to the App Store at
this time because it does not adhere to the iPhone human Interface
guidelines as outlined in iPhone SdK Agreement section 3.3.5.

when the device is not connected to network, attempting to
‘Submit high score’ does not give a transmission error and score
disappears from the scoreboard. This behavior might lead to user

Chapter 7: App Store226

confusion. It would be appropriate to display either a notification
or an alert stating that Internet connectivity is required.

Please review the handling Common Tasks section of the iPhone’s
human Interface guidelines here: https://developer.apple
.com/iphone/library/documentation/UserExperience/Conceptual/
MobileHIG

In order for your application to be reconsidered for the App Store,
please resolve this issue and upload your new binary to iTunes
Connect. Should you require more assistance with resolving this
issue, Apple developer Technical Support is available to provide
direct one-on-one support for discrete code-level questions.

regards,

iPhone developer Program

Always make sure when submitting data over the network that you display a noti-
fication to the user if it fails. At a minimum you could display this error condition
with a simple alert dialog. Just remember to always check this condition by putting
your device in Airplane Mode and testing all the app features that use the network.
If you are using an iPod touch, just disconnect from WiFi in order to test.

dear developer,

your application, Card Counter, cannot be submitted to the App
Store because it uses a standard ContactAdd button for an action
that is not its intended purpose. Applications must adhere to the
iPhone human Interface guidelines as outlined in iPhone SdK
Agreement section 3.3.5.

The ContactAdd button is to be used to display a people picker to
add a contact to an item. In your application, it is used to increase
the count of the cards displayed, as seen in the screenshot at-
tached. Implementing standard buttons to perform other tasks will
lead to user confusion.

App review 227

Please review the System-Provided buttons and Icons section of the
iPhone’s human Interface guidelines here: https://developer.apple
.com/iphone/library/documentation/UserExperience/Conceptual/
MobileHIG

In order for your application to be reconsidered for the App Store,
please resolve this issue and upload your new binary to iTunes Connect.

regards,

iPhone developer Program

I was using a button that contained a graphic similar to their ContactAd button.
Although it made sense for my game, it was just too similar to their stock button.
You need to make sure the buttons you use do not appear like the default stock
buttons. I fixed this by buying a set of really professional-looking icons that were
themed completely different from controls found in iOS.

My next rejection came when I updated my game to be a universal application to
support the full screen of the iPad.

dear developer,

Thank you for submitting Card Counter to the App Store. we’ve
reviewed your application and determined that we cannot post
this version of your iPad application to the App Store. Applications
must adhere to the iPad human Interface guidelines as outlined in
the iPhone developer Program license Agreement section 3.3.5.

The iPad human Interface guidelines state that an iPad applica-
tion should be able to run in all orientations. Card Counter is only
supporting one variant of the portrait orientation. while we under-
stand there are certain applications that need to run in the portrait
orientation, it would be appropriate to support both variants of this
orientation in your application.

Please note that supporting all four orientations, each with unique
launch images, provides the best user experience and is recom-
mended. Please review the Aim to Support All orientations section
of the iPad’s human Interface guidelines here:

Chapter 7: App Store228

http://developer.apple.com/iphone/library/documentation/General
/Conceptual/iPadHIG/iPadHIG.pdf

In order for your application to be reconsidered for the App Store,
please resolve this issue and upload your new binary to iTunes
Connect. Should you require technical assistance, you may use
one of your Technical Support Incidents included in your iPhone
developer Program by sending an email to Apple developer
Technical Support.

Sincerely,

App review Team

This time the App Review Team got it wrong, as my game already supported
portrait and upside-down portrait orientations. I’m guessing the reviewer had
their screen orientation lock engaged when they reviewed the app. I responded to
the reviewer with a follow-up email and attached a screenshot of the game in the
middle of a screen rotation.

dear App review Team,

The version that we submitted supports both variants of portrait
mode for iPad. The iPhone version supports only one. Attached is a
screenshot of Card Counter when you rotate the iPad device to por-
trait upside down. As you can see it rotates to that orientation. Can
you please clarify the issue?

Thanks,

Todd

I received the following response:

hello Todd,

Thank you for the clarification. we’ll proceed with the review.

Sincerely,

App review Team

App review 229

Guess they don’t always get it right, so it is nice they let you follow-up with an
email. This next rejection was not for the game itself but for the application de-
scription of the game.

dear Todd,

Thank you for submitting Tic Tac blackjack lite to the App Store.
we’ve reviewed Tic Tac blackjack lite and determined that we can-
not post this version of your iPhone application to the App Store
because your application contains pricing information in the mar-
keting text (Application description / release notes). Providing
specific pricing information in these locations may lead to user
confusion because of pricing differences in countries. It would be
appropriate to remove pricing information from these locations.

once the necessary modifications are completed, please let us
know so we can proceed with the review.

regards,

iPhone developer Program

Never mention the price of your game in the application description. As I men-
tioned before, you can say “Free” or even “50% Off” but when you list a price it will
cause the rest of the world to get confused since it wouldn’t be in their local cur-
rency. iTunes shows the price in the Buy button in the user’s local currency so there
is no need to mention it. Here’s another rejection received from the same game:

hello Todd,

your application, Tic Tac blackjack lite, cannot be posted to
the App Store at this time because it does not achieve the core
functionality described in your marketing materials, or release
notes. Applications must adhere to the iPhone human Interface
guidelines as outlined in the iPhone developer Program license
Agreement section 3.3.5.

The release notes for Tic Tac blackjack lite state, “also allows you to
start at any puzzle you want”; however, users can only choose from

Chapter 7: App Store230

the puzzles they have previously solved. This review was conducted
on iPhone 3g running iPhone oS 3.0.1.

In order for your application to be reconsidered for the App Store,
please resolve this issue and upload your new binary to iTunes
Connect.

Should you require more assistance with resolving this issue, Apple
developer Technical Support is available to provide direct one-on-
one support for discrete code-level questions. Please be sure to
include any crash logs, screenshots, or steps to reproduce this issue
in your request.

regards,

iPhone developer Program

I was kind of surprised that the reviewer actually took that hard of a look at my
game. They were correct in that you couldn’t start at any puzzle and you could
only start at puzzles you previously solved. This was another simple fix that only
required changing the release notes in the application description.

The next rejection comes from my poor use of icon images.

dear Todd,

white noise cannot be posted to the App Store because the small
bundle icon does not match your large icon. This might be confus-
ing to users.

iTunes Connect users guide, pg 27 C) large Icon (512x512) The
small (57x57) icon that you include inside the binary will be used
on the home screen, and the App Store when viewed from the iPod
touch and iPhone. The large icon will be used to feature your appli-
cation on the iTunes App Store.

Please resolve this issue and upload a new binary and correct meta-
data using iTunes Connect (http://itunesconnect.apple.com/)

regards,

iPhone developer Program

App review 231

My large icon was slightly different from my smaller application icon. You should
always design your icon to target the iTunes size of 512×512 and then downsize
to all the other required dimensions for use in the application. It makes sense that
users will expect to see the same icon while using both the desktop version of
iTunes and the device version of the App Store. The next rejection was upsetting,
in that this was a highly requested feature by customers of my application. It just
wasn’t permitted by Apple:

dear Mr. Moore,

Thank you for submitting white noise to the App Store.
unfortunately it cannot be added to the App Store because it is
using a private API. use of non-public APIs, which as outlined in
the iPhone developer Program license Agreement section 3.3.1 is
prohibited:

“3.3.1 Applications may only use documented APIs in the manner
prescribed by Apple and must not use or call any private APIs.”

The non-public API that is included in your application is terminate.

In order for your application to be reconsidered for the App Store,
please resolve this issue and upload your new binary to iTunes
Connect.

Please respond to this email once you have resubmitted your bi-
nary and we will expedite your review.

regards,

iPhone developer Program

My application included a feature to allow closing of the application automatically
using a timer, which could help save battery life. This was accomplished by calling
terminate on the application object. It turns out this method was not document-
ed and not permitted. In the end, I solved it by calling the C-based exit func-
tion, which is not the ideal way to implement this because it doesn’t gracefully do
a proper application shutdown, however it is on the list of permitted functions.
I doubt you will need to ever do this in a game but I mention it so that you are
aware that you cannot call undocumented methods.

Chapter 7: App Store232

hello Todd,

your application, white noise lite cannot be posted to the App
Store at this time because it is a feature-limited version. free or
“lite” versions are acceptable, however the application must be
fully functional and cannot reference features that are not imple-
mented. In white noise lite, multiple sound options contained un-
der Sound Catalog, the Pitch control feature in Sound Settings, and
Timer Settings are not available.

Please upload a new binary and correct metadata using iTunes
Connect (http://itunesconnect.apple.com/).

best regards,

iPhone Application review Team

I had controls that were disabled on the screen with a note saying upgrade to
enable this functionality. This is not permitted. You can have an upgrade page
within your application to promote your full version but you can’t show features
that are disabled within the app itself. I’ve seen many games that were approved
that push the boundaries of this, such as having buttons that reference new levels
but when clicked say you need to upgrade. I’ve seen levels in extremely popular
games that say “coming soon,” which is clearly referencing missing implementa-
tion. I’m assuming games are given more leniency with this rule rather than stan-
dard applications such as my White Noise app.

My most recent rejection comes from the Paddles game created in this book. This
is more of an automated message and it is also the rejection I’ve seen the most:

dear developer,

we have discovered one or more issues with your recent binary
submission for “Paddles”. The following issues will need to be cor-
rected in order for your application to proceed to review:

Invalid Signature - Make sure you have signed your application
with a distribution certificate, not an ad hoc certificate or a devel-
opment certificate. Verify that the code signing settings in Xcode
are correct at the target level (which override any values at the

App review 233

project level). Additionally, make sure the bundle you are upload-
ing was built using a release target in Xcode, not a Simulator tar-
get. If you are certain your code signing settings are correct, choose
“Clean All” in Xcode, delete the “build” directory in the finder, and
rebuild your release target.

once you have corrected these issues, go to the app’s version
details page (found in the Manage your Applications module of
iTunes Connect) and click ready to Submit binary. Proceed through
the submission process until the app’s status is waiting for upload.
you can then use Application loader to upload the corrected
binary.

regards,

The iTunes Store Team

The description on how to fix this problem seems to solve it every time. The
Xcode project settings are usually always to blame here. If you ever see this mes-
sage, and I’m assuming you will, make sure you are using the correct certificate
for App Store distribution specified in the application target. I also recommend
doing a clean build of the application before submitting again.

Those are just a few of the many rejections I have received over the years. There
are a lot of guidelines to follow and they do change over time so you will probably
discover many more going forward. Hopefully now that you have seen a few of
my rejections you won’t feel too bad if it happens to you.

Chapter 7: App Store234

App Marketing and Sales
There are numerous ways to market your application and I recommend you try
them all out to get a feel for what works for you. The first thing you need to know
is a strategy of “submit it and they will come” is probably not going to work.
When I submitted my first game there were fewer than 1,000 apps in the store so
it was much easier to get noticed. Now that there are over a half million applica-
tions you will have to put forth some effort in order to get noticed.

I have been fortunate to have had many of my applications featured by the iTunes
staff or reviewed in major newspapers and online blogs. This kind of exposure
can have a huge impact on the success and ranking of your app. I’ll cover a few
websites that I recommend that can help promote and advertise your application.
I’ll also cover how to track your app’s ranking and sales. Hopefully you will find
success in implementing some or all of these strategies.

The first thing you need is a link to your application in the iTunes App Store. You
can either log in to iTunes Connect and get the link from the product page or just
fire up iTunes and right-click on your icon and copy the link. For example, my
most popular game, Card Counter, has the following link:

http://itunes.apple.com/us/app/card-counter/id293742180?mt=8

Clicking on that link will bring up a preview of the application in the web brows-
er, and if iTunes is installed it will bring up the listing and allow for immediate
purchase. It also works on the mobile device, too. You will want to always include
this link for every place that you post about your application.

There are other ways to launch into the iTunes store using search parameters. For
example, if I wanted to link to all my published applications in the App Store, I
could use the following:

http://itunes.com/apps/toddmoore

That will bring up all the apps listed under my name. If I wanted to bring up a
specific application such as the Paddles game (shown in Figure 7-4), I could use
the following link:

http://itunes.com/apps/toddmoore/paddles

App Marketing and Sales 235

You can also just search for the application name without the company specified
but I do not recommend it, as it could bring up other applications with similar
names that are not your own. The last thing you want to do is promote someone
else’s app, so always include your company identifier with the search link.

 figure 7-4. launching iTunes to a specific application

Chapter 7: App Store236

The Social network
The first places to start promoting your application is on email, Facebook, Twitter,
and Google+. Hopefully you already have signed up for all the social networks,
but if not it is time to join in on the fun. Friends and family will always download
your new game, especially if it is your first venture into the App Store. They prob-
ably will grow tired of hearing about your new app after releasing over 30 of them
(like I have) but initially they will be your best customers. Every download helps
and hopefully if they like it they will leave you a nice review.

I’ve been asked before if you should create a Facebook page for each app you
release. I find it best to just create one single company page. For example, I use
www.facebook.com/tmsoft as my company page and I promote all my applications
there. I also have a Twitter account under @tmsoft (http://twitter.com/tmsoft),
which is linked to my Facebook page so both accounts get updated at the same
time. You could set up different accounts and pages for each application you cre-
ate but I find it best to keep your followers up-to-date with a single Facebook
page and Twitter account. This also has the benefit of letting you cross-promote
to existing customers when new apps come out.

The iTunes feature
Nothing listed here works better than getting your game featured in the iTunes
App Store. Every week Apple will feature a new batch of apps and games. This can
really drive a ton of downloads and it doesn’t cost a thing. I have been fortunate
to have a couple of my apps and games featured, but please know that there is no
way to make sure this happens. I can however tell you a few general guidelines
that will help better position yourself for selection.

Apple wants you to make their platform look great. Period. Your game needs to
have awesome graphics, sounds, and music. They also like when you use the latest
iOS features. When the iPad first came out, I updated Glow Burst as a universal
application and submitted it before the iPad was available for purchase. It was
featured in both the iPhone and iPad App Store (shown in Figure 7-5). When the
iPhone 4 came out, I updated it again to support the Retina display. It was also
featured again. When Game Center came out, I quickly updated it to support lea-
derboards and achievements. It was featured yet again. Either someone over there

App Marketing and Sales 237

really liked my game or they really appreciated my usage of the latest features of
iOS. I’m guessing it was a little of both.

 figure 7-5. glow burst featured in iTunes next to Avatar

I created another game called Lift Off to help promote my friend’s song that was
also named Lift Off. I feel strongly that combining good music with your game is
almost a requirement to getting featured. If you know some independent artists
that have their music in iTunes then you should definitely ask them if you can use
it, especially if it fits the game. It helps promote their music (links to songs work
the same as apps in iTunes) and helps you by making your game more unique.
The Lift Off game was featured in iTunes under the Game section.

It feels great to see your application featured by Apple and I hope you get to expe-
rience it. It means you did something right. It’s like getting a pat on the back for
a job well done. If it happens to you, make sure to promote the fact in both your
application description, website, and everywhere else your app is mentioned.

free web reviews
Now that your application has been approved and is available for download, it is
time to market it. The first website you should check out is http://www.gotoats.
org/—which has a listing of iPhone app and game review sites that “uphold proper
editorial ethics and standards.” In short, these sites do not have paid reviews. That

Chapter 7: App Store238

means the reviews will be honest and they will never try to get you to pay for your
app to be reviewed. That also means they may not care to review your game, but
you should always reach out and let everyone on the list know about your new re-
lease. A free review of your game will certainly drive additional downloads.

One of the best websites for game reviews is http://toucharcade.com/. If your
game gets reviewed there it will certainly drive a ton of downloads. Even posting
about your game in the forums is a great way to get your game some attention.
Make sure to create an account and use their forums. You might even be able to
get some feedback from gamers, especially if you give a few promo codes.

If you are charging money for your app, you can use promotional codes to give
users the ability to download a free copy. Promotional codes can be retrieved
from the iTunes Connect website. You get 50 codes per application update and
they expire after 30 days from when you retrieve them. This is a fantastic way
to give web reviewers a free copy, and hopefully if they like your game they will
review your app. If somebody wants to write about your app, you should always
give them a free copy. The more people that write about your game the better, and
the more links you can get to the iTunes store or your own website will help raise
your PageRank in Google.

One thing to know is if someone uses a promo code then they will not be able to
leave a review on iTunes. Promo code downloads also do not contribute to your
application ranking. I recommend saving your promo codes for people that might
give you a web review or provide you with direct feedback about the game.

The lite Version
A lite version is a fantastic way to promote the full version of your app. It’s basi-
cally free marketing. It allows potential customers to try out your game and you
can even earn additional money by using services such as iAd or AdMob to dis-
play ads within your game. I recommend taking a few features out of your game
in order to give customers a reason to upgrade. For example, one of my most
featured games on iTunes was Glow Burst, and I made sure to create a lite version
to help promote it. The lite version only has one level of difficulty and includes
advertising on the main screen. It has direct links to purchase the full version in
the App Store.

App Marketing and Sales 239

The lite version does a lot to promote your application. First, you will get more
downloads because it is free. People that play and like your game might tell others
about it and then they can download it, too. You can earn money off the free app
by using an ad network. I recommend using an ad aggregator such as AdWhirl
(https://www.adwhirl.com/) so you can control which ad network you want to
use at any point. This allows you to rotate between networks, which helps to
make sure you get higher fill rates. You can also run your own house ads using
AdWhirl, so it’s easy to cross-promote other apps and games you create.

If you want to run your own advertising campaign, one thing that is great about
AdMob is if you have made money by being an ad publisher, you can transfer
money into your advertising account. The nice thing about this approach is they
usually give a bonus of around 20% when you do the transfer. This is a good
way to get more mileage out of your advertising dollars. You can always fund
the account from a bank account if you haven’t earned enough money from the
publisher side. AdMob also is really easy to get set up and running. I’ll talk more
about running paid ad campaigns next.

Paid Advertising
Who are the best people to advertise your new iPhone game to? Obviously the
people that have an iPhone and download and use apps. It is much better to
advertise within other iPhone apps then on a regular website or within search
results using Google AdSense. This of course will cost money, and if that’s okay
then I recommend using a service like AdMob. You can target the people that
have iPhones or iPads, specific iOS versions, and even down to the country or
city. Running ad campaigns using this kind of targetting is the best use of your
funds. If you have enough money to run a decent campaign then this is the easi-
est way to get a lot of downloads, especially if the game is free. I do not recom-
mend advertising paid apps. You will have a much better success rate if you pay to
advertise a free version of your game. And then, once downloaded, the free ver-
sion can be used to drive paid downloads of the full version.

Chapter 7: App Store240

AdMob offers a pay-per-click model, which means you pay whenever somebody
clicks on the ad. The ad will take the person to the App Store listing of your ap-
plication. This doesn’t mean you will get a download, as they might decide against
downloading it. The best ratio I’ve ever experienced was 1 out of 4 clicks resulted
in a download. You just can’t do much better than 25% of all clicks resulting in a
download. I was paying $0.05 a click and $.20 a download for my free app. These
results are the absolute best results that I have ever seen and it happened only after
running and tweaking numerous ad campaigns. These results were so good, in fact,
that it caught the attention of AdMob and we did a case study together on the cam-
paign. I will cover the strategy I use when I advertise later, but first I need to go over
a few advertising terms you will need to know in order to understand what you are
paying for and how to track the success of your marketing campaign.

• Ad: The ad usually includes a single image of a specific size, such as 320×48
or a 38×38 icon with one line of text. The icon with text ad has a lower cost,
but the text is limited to 35 characters so you might have to get a little cre-
ative to get your point across. There is a single link that usually launches off
the App Store or other web page. It is best to direct customers right to your
application in the App Store so it only takes one more click to download.

• Bid: How much are you willing to pay for someone who clicks on your ad?
That is your bid price, and usually you will accept the minimum allowed by
the ad network. The minimum bid will change based on the type of ad you
run and how targeted the campaign is. You usually will not raise the bid
higher than the minimum unless you notice your ad is not running. This
happens when people have outbid you and their ad gets priority. I have only
had to raise my minimum bid between Christmas and New Years, as there
are a lot of companies taking out advertising and making higher bids so their
inventory runs. All other times I have not seen an issue using the minimum
bid.

• Impressions: This is the number of times your ad has been displayed. A
popular metric is called CPM, which is cost per thousand impressions. Even
though you are paying for clicks, this calculation lets you know how much
you are paying every time you ad is viewed 1,000 times. Some ad vendors al-

App Marketing and Sales 241

low you to pay for impressions but most of the mobile ad networks typically
only support paying for clicks.

• Clicks: The amount you pay for clicks is known as CPC, or cost per click. You
specify how much you are willing to pay for a click in the bid price.

• CTR: Click through rate is the ratio between impressions and how many
times a person clicks on the ad.

• Cost: This is total amount you are paying across all your campaigns.
Generally, you set a daily limit on how much you are willing to spend, so if
you had $3,000 to spend on your ad campaign you could divide that up over
a number of days.

• Downloads: This is the number of downloads you have gotten from your
campaign. You will have to add some tracking code into your application in
order to get this statistic. I highly recommend you do this because without
this metric you really don’t know how your campaign is doing. At the end of
the day, you want downloads. And just getting the number of clicks your ad
has received does not paint the whole story.

• Conversion Rate: This is the ratio between clicks and downloads. Obviously
you want this to be as high as possible.

• Cost/Download: This is the most important metric. How much are you pay-
ing per download? On average you will probably be paying around $1 per
download. I’ve seen campaigns cost as much as $20 for a single download
and that is just horrible. You are getting too many clicks and not enough
downloads if that happens. I usually stop running an ad campaign that costs
more than a dollar per download.

Let’s take an actual example that will hopefully help you understand the terms
mentioned above. I ran a campaign that targeted iPhone users in the United
States, which had a minimum bid or CPC of 5 cents. This particular campaign
resulted in about one million impressions. That means my ad was displayed one
million times to iPhone users in the United States. I had roughly 6,000 clicks on
my ad, which cost me $300. Because I had conversion tracking put into my ap-
plication, I could get the total number of downloads—which was about 250. This
gave a conversion rate that was around 4%. So 4% of the clicks would result in a

Chapter 7: App Store242

download. Or if you want to look at it another way, 96% of the clicks were wasted
money. Get used to that. The most important metric is what I was paying per
download, which ended up being $1.20. That’s not very good for a free applica-
tion so I ended stopping that campaign and going with others that were produc-
ing better results.

I recommend always creating multiple ad campaigns and always put download
tracking into your application before starting a campaign. Each of your ads
should have a different message. You don’t get a lot of space if you’re putting in
a 35 character message, but in advertising less is usually more. Nobody wants to
read a lot of text. Try to catch the users attention. Make them want to click and
see what your app is all about. You will notice all of the ad campaigns you create
will always perform differently. I keep a close eye on the performance of my cam-
paigns and shut down ones that are performing poorly before too much money is
spent.

I typically create about 10 different ads and test them out over time to see which
perform better. The more ads you create, the better chance of success you will
have. Remember that app rankings on iTunes are country specific. If you are try-
ing to get a higher rank in a specific country, you should create campaigns that
target those regions. I typically always target the United States, as that has typi-
cally been the biggest source of revenue for my apps.

Tracking Sales & ranks
iTunes Connect offers sales data for applications on the iOS and Mac App Stores,
as well as advertising profits using iAd. There is also a mobile application you can
download from iTunes Connect that gives you access to the data. I have a couple
other services I use that retrieve and provide reports on the sales and rank data.

I recommend App Annie (http://www.AppAnnie.com) for tracking your applica-
tion ranks. As shown in Figure 7-6, App Annie is displaying historic ranking data
for Glow Burst when it was featured and became the #1 Kids game on the iPad.
You can also use this service to track sales and rankings together. I signed up for
this service because they send you a daily email with sales numbers, application
ranks, and new customer reviews. It really is one of the best services around.

App Marketing and Sales 243

 figure 7-6. App Annie graphs historic app rankings

If you don’t feel comfortable letting a third party have access to your sales data
and would rather download it locally to your computer, then I recommend using
AppViz by IdeaSwarm (http://www.ideaswarm.com/) for that purpose. It’s a great
Mac application that downloads sales data for both the iOS and Mac App Store. It
also includes iAd profits, application reviews, and app rankings. I use this applica-
tion in addition to the App Annie website, so I have a local copy of all my sales
data.

Conclusion
I hope you have enjoyed this adventure to the App Store as much as I enjoyed
putting this book together. There is much to know in this new world of mobile
applications and hopefully you were able to get a few gems out of this book. I
encourage you to write all your ideas for games and apps down in a document
as they come to you. New game ideas constantly come to me and there is no way
I could implement them all. But I write them all down and when I do get free
time, I like to pick one and run with it. Make sure to take on projects that you

Chapter 7: App Store244

feel you can actually accomplish and of course make sure it’s an idea that would
be approved by Apple.

I covered a lot of ground here and hopefully you now have the skills to create
code, graphics, and sounds to give your new game the best shot at success. Do
not get discouraged if you don’t get featured on iTunes right out of the gate. It
takes time and it’s a continuous learning process. I would love to see your
creations so please let me know when your game becomes available for down-
load. The best place to contact me is at my website (http://toddmoore.com/) or
on Twitter @toddmoore (http://twitter.com/toddmoore). Good luck to you and I
hope you find success in the App Store.

Conclusion 245

index

A
AAC format, 162
ad aggregators, 240
AdMob service, 239, 240
Adobe graphics products, 90–91
advertising, paid, 240–243
AdWhirl.com website, 240
afconvert tool, 162
.aif files, 81, 161
Air Hockey game

application integration, 116–121
bitmap format and, 91
computer player difficulty levels,

205–211
computer player menu, 173–183
creating application icons, 114–116
designing computer player, 183–204
Interface Builder and, 118–121
making button images, 110–112
making paddle image, 102–116
making puck image, 97–102
making table image, 106–110
recording sounds, 166–167
reviewing game images, 113
simulator operations, 121

airplane mode, 226
alertView:didDismissWithButtonIndex

method, 182
animation

in Air Hockey game, 139–157
in Paddles game, 59–62

AppAnnie.com website, 243
App ID, 219
App Info file, 42
Apple Developer website, 1
Apple ID, 1
application description, 216–217
applicationDidBecomeActive method,

21, 25, 77
applicationDidEnterBackground meth-

od, 21

application:didFinishLaunchingWithOpt
ions method, 21, 25

application icons, 114–116, 231–232
application names, 216, 218
applications. See building and running

applications
application states, 19–25, 187
applicationWillEnterForeground meth-

od, 21
applicationWillResignActive method,

22, 77
applicationWillTerminate method, 22
App Ocean (app), 165
App Store

application review, 226–234
archiving apps, 224–225
creating app description/keywords,

216–218
featuring new apps/games, 237–238
lite version, 239
marketing applications, 235–244
screenshots of apps, 213–215
submitting meta to iTunes Connect,

218–223
Top Grossing category, 220
Top Paid category, 220
tracking sales/ranking, 243

AppViz application, 244
arc4random() function, 35, 59
Assistant option (Editor submenu/View

menu), 30
atan2 function, 129
Atari Home Pong console, 39
Attributes Inspector

about, 26–27
computer player example, 173
depicted, 45
opening, 43

Audacity tool, 167–171
audio. See sounds
AudioServicesCreateSystemSoundID

method, 84

Chapter 2: Index246

index

AudioServicesPlaySystemSound func-
tion, 85, 161

AudioToolbox framework, 82–83
automatic snapshots, 118
Autorelease memory pool, 20
AVAudioPlayer class, 162

B
background images, creating, 106–116
backwards compatibility for applications,

95
bitmap graphics format

about, 91
exporting vector format in, 92
scaling images and, 91–93
transparency support, 93

breakpoint navigator, 8, 10
breakpoints, adding/deleting, 11
building and running applications. See

also Air Hockey game; Paddles
game

application integration, 116–121
application states, 19–25
backwards compatibility, 95
device considerations, 16–17
game logic, 34–37
iOS version considerations, 16, 41
simulator operations, 14–16

Bundle ID (apps), 219
buttons

computer player example, 174–176
creating, 110–121
design considerations, 228

C
.caf files, 81, 161
Card Counter (app), xii, 226–229, 235
CGPointMake function, 54
CGPoint structure, 54
CGRectIntersectsRect structure, 63
CGRectMake function, 63

CGRect structure, 63
Click Through Rate (CTR), 242
Code Completion feature, 10
collision detection

about, 63–65
puck physics, 139–157
sounds for, 81

color codes, hexadecimal, 98, 102
Command-F keyboard shortcut, 168
Command-R keyboard shortcut, 14
Command-Shift-4 keyboard shortcut,

214
compressed formats, 162–163
computer player

computer player menu, 173–183
creating difficulty levels for, 205–211
defensive state and, 189–194
designing from scratch, 183–204
offensive strategy and, 194–204

Connection Inspector, 26
connections

creating, 30–34
laying out game pieces, 47–49

Control-click keyboard shortcut, 31
Control-Space keyboard shortcut, 10
cos function, 129
CPC (cost per click), 242
Creative Commons Sample Plus license,

163
CTR (Click Through Rate), 242

D
dealloc method

Air Hockey game, 125, 132–133
Paddles game, 49, 144

debug area (Xcode interface), 13, 51
debug navigator, 8, 9
decoding compressed formats, 162–163
defensive state (computer player),

189–194
delegates, defined, 20
Deployment Target, configuring, 41–42

247

index

developers, registering, 1
Device option (Hardware menu), 15
devices

orientation considerations, 41, 136–
137, 228

registering for development, 16–17
removing status bar display, 42
screenshots of apps, 213–215
shake gesture and, 78–81
silent mode, 87
typical screen sizes, 94

difficulty levels for games
for computer player, 205–211
increasing, 74–75

digital recordings, 160
direction, tracking, 59–61
displaying messages in Paddle game,

69–71
display resolution, 94–96, 215
distance formula calculation, 127–128
distortion (sound), 165
downloading sounds, 163–171
DropBox iPhone app, 215
drop shadows, 100, 104, 108
Duplicate option (File menu), 117

E
editing sounds, 167–171
editor area (Xcode interface)

about, 10–12
Code Completion feature, 10
Fix-it feature, 11
opening files in, 8

Editor menu, 47
Editor segment control, 30
Ellipse tool (Adobe Fireworks), 97–98,

103, 106
Empty Application template, 6
ending score in Paddles game, 72–74
error conditions, displaying, 227
EULA (End User License Agreement), 222
exporting graphics files, 92, 101

F
fabs() function, 63
fading out audio, 170
File Inspector, 13
File menu

Duplicate option, 117
New submenu, 4, 40

filename convention, 95–96
filter bar

about, 8
displaying symbols, 9

Fit Canvas button, 99–100
Fix-it feature, 11
flat view (symbol navigator), 9
focus ribbon, 11–12
Font button, 28
freesound.org website, 163

G
GameAppDelegate.h file, 12, 18
GameAppDelegate.m file, 18, 20
Game-Info.plist file, 19
game layout and logic

connections, 47–49
defensive state for computer player,

189–194
game elements, xiii
Interface Builder support, 43–47
for math problem, 34–37
offensive strategy for computer player,

194–204
paddle physics, 123–139
puck physics, 139–157

Game-Prefix.pch file, 19
GameViewController.h file, 18, 30
GameViewController.m file, 18, 23
GameViewController.xib file, 18, 26
Garage Band tool, 163
Gimp program, 90
Glow Burst (app), 164, 237–238
Google AdWords, 217
gotoats.org website, 238

Chapter 2: Index248

index

gradients, changing, 98–99, 112
graphics in games. See also Air Hockey

game
application integration, 116–121
bitmaps and vectors, 91–93
image formats, 93
importance of, 89
options for, 89–90
retina display technology, 94–96
tools to create, 90–91

gutter, defined, 11

H
Hardware menu

Device option, 15, 121
Home Button option, 15
Lock option, 15
Rotate Left | Right option, 15
Shake Gesture option, 15
Version option, 15

hexadecimal color codes, 98, 102
hierarchical view (symbol navigator), 9
home button, 15, 77, 213
Human Interface Guidelines (Apple), 226

I
iAd service, 239, 243
icons, application, 114–116, 231–232
IdeaSwarm.com website, 244
Identity Inspector, 26
IMA/ADPCM (IMA4) format, 81, 161–162
image formats

about, 93
best practices, 92
Interface Builder and, 118–121

Image Preview screen (Adobe
Fireworks), 102, 109

initWithView method, 125–126
Inkscape tool, 90
inspectors, choosing from, 43. See

also specific inspectors

installing Xcode, 2–3
Interface Builder

about, 26–29
dragging images into, 118–121
laying out game pieces, 43–47
WYSIWYG editor, 43

intValue method, 36, 67
iOS Dev Center program, 1
iOS Provisioning Portal, 219
iOS Simulator menu, 16
iPhone (Retina) option (Device sub-

menu/Hardware menu), 121
iPhoto software, 215
issue navigator, 8, 9
iTunes App Store. See App Store
iTunes Connect

Add New App button, 218
entering credentials, 224
Manage Your Applications, 218
promotional codes, 239
submitting meta to, 218–223
tracking sales/ranking, 243
uploading photos to, 215

J
JPEG format, 93

K
keyboard shortcuts. See specific key-

board shortcuts
keywords for apps, 217–218

L
labels, positioning, 28
Lift Off (app), 238
lite version (apps), 239
locationInView method, 53
Lock option (Hardware menu), 15
log navigator, 8, 10
lossy formats, 93, 167

249

index

M
main.m file, 19–20
marketing applications, 235–244
master copy (sound recordings), 167
Master-Detail Application template, 5
math problem, game logic for, 34–37
Media library, 118
memory leaks, 33
messages, displaying, 69–71
motionBegan method, 79–80
motionCancelled method, 79
motionEnded method, 79–80
motion events, 78–81
MP3 format, 162, 167
multipleTouchEnabled property, 52
multi-touch functionality

about, 49–50
enabling, 51–53
issues when implementing, 55–56
methods of, 50–51
moving paddles, 53–55
tracking touch objects, 56–59

musicloops.com website, 164

N
Nash, Courtney, 135, 165
Navigation-based Application template, 5
navigator area (Xcode interface), 8–10
New Project option (New submenu/File

menu), 4, 40
New Referencing Outlet, 31
nfoPlist.strings file, 19
normalizing sounds, 165, 170
NSLog function, 19–20, 22
NSObject class, 140
NSString class

displaying symbols, 9
intValue method, 36, 67
stringWithFormat method, 35
text property, 36

NSTimer object, 61

O
Object Library

about, 26, 45
depicted, 45

offensive strategy (computer player),
194–204

onPlay method, 176–177
OpenAL (Open Audio Library), 164
OpenGL Game template, 5
Option-Command-0 keyboard shortcut,

12
Organizer application, 16
orientation, device

app design considerations, 41, 228
touch point tool, 136–137

Outline View, 46

P
paddles

in Air Hockey game, 102–116
collision detection, 75
computer player example, 183–186
increasing game difficulty via, 74–75
moving, 53–55
paddle physics, 123–139

Paddles game
animation in, 59–62
collision detection, 63–65, 81
depicted, 39
displaying messages in, 69–71
ending score, 72–74
increasing difficulty of, 74–75
laying out game pieces, 43–49
multi-touch functionality, 49–59
pause/resume logic in, 76–77
project creation, 40–43
scoring functionality, 65–69
shake gesture in, 78–81
sounds in, 81–87

paid advertising (apps), 240–243
partnersinrhyme.com website, 164
pause/resume logic in Paddles game, 76–77

Chapter 2: Index250

index

pay-per-click advertising, 241
PCM format, 81, 161–162, 167
personal profiles, creating, 1
placeholder text in text fields, 28
PNG format, 93–94, 101
Polygon tool (Adobe Fireworks), 98
Pong game. See Paddles game
pricing information for apps, 217, 220,

230
printf function, 19, 35
project creation

about, 4, 6–7, 40
in Air Hockey game, 117
App Info file, 42
target settings, 41–42

project navigator
opening, 8
Supporting Files group, 19

project templates
Empty Application, 6
Master-Detail Application, 5
OpenGL Game, 5
Page-based Application, 5
Single View Application, 6, 18, 40
Tabbed Application, 5
Utility Application, 5

promotional codes, 239
pucks

in Air Hockey game, 97–102
animating in Paddles game, 59–62
increasing game difficulty via, 74–75
puck physics, 139–157

Q
Quick Help, 13

R
rand() function, 35
random() function, 35
random number generation, 35, 188

Realistic iPhone Game Development
video series, 135

recording sounds, 164–167
Rectangle tool (Adobe Fireworks), 98, 106
registering

Apple developers, 1
application names, 218
devices for developing, 17

Release mode, 224
Reset Content and Settings option (iOS

Simulator menu), 16
reset function, 60–62, 127
retina display

about, 94–96
Air Hockey game, 121
screenshots of apps and, 215

RGB color code, 98
rollbacks to project snapshots, 118
Rotate Left | Right option (Hardware

menu), 15
Rounded Rect vector tool, 111
running applications. See building and

running applications

S
sample format, 161
sample rate, 160–161
scaling images, 91–93, 101
scoring

about, 65–69
ending score, 72–74
puck physics, 139–157

screen lock button, 213
screen refresh rate, 61
screen resolution, 94–96, 215
screenshots of apps, 213–215
search navigator, 8, 9
secondary editor, enabling, 30
Send to Back option (Arrangement sub-

menu/Editor menu), 47
shake gesture in Paddles game, 78–81

251

index

Shake Gesture option (Hardware menu),
15

Show Debug Area option (View menu),
13, 51

Show | Hide Utilities option (Utilities
submenu/View menu), 12

silent mode, 87
simulator

about, 14–37
for Air Hockey game, 121
taking screenshots with, 214

sin function, 129
Single View Application template

about, 6
selecting, 40
skeleton files included, 18

Size Inspector
about, 26
computer player example, 173
depicted, 46

SKU Number (apps), 219
snapshots, automatic, 118
social networking, 237–238
sounds

about, 159
creating, 163
digital recordings and, 160
downloading, 163–171
editing, 167–171
file formats supported, 161–163
normalizing, 165, 170
playing different effects, 81–87
recording, 164–167

speed
calculating maximum, 128
image formats and, 93
tracking in Paddles game, 59–61

status bar
removing, 42
touch handling and, 136–137

storing artwork, 101
stringWithFormat method, 35
submit function, 35

Supporting Files folder, 42
Supporting Files group (project naviga-

tor), 19
suspended state, 33, 77
symbol navigator, 8, 9
@synthesize declaration, 125
System Audio Services, 81

T
Tabbed Application template, 5
tag property, 36, 176
target settings

about, 41–42
accessing, 40

templates, project. See project templates
text fields

placeholder text in, 28
using for input, 27

text property, 36
Text tool (Adobe Fireworks), 108
Top Grossing category (App Store), 220
Top Paid category (App Store), 220
toucharcade.com website, 239
touchesBegan method

about, 50
Air Hockey game example, 132
computer player example, 185
enabling touches, 53
moving paddles, 54
tracking touch objects, 56–57

touchesCancelled method
about, 50
tracking touch objets, 59

touchesEnded method
about, 50
Air Hockey game example, 134
tracking touch objects, 58

touchesMoved method
about, 50
Air Hockey game example, 133
moving paddles, 54
tracking touch objects, 57

Chapter 2: Index252

index

touch functionality. See multi-touch
functionality

tracking direction and speed, 59–61
transparency, defined, 93

U
UIAlertView class

displaying messages, 69–71
tag property, 36

UIApplicationDelegate protocol, 13
UIApplicationMain function, 20
UIButton class, 181
UIImageView object, 118
UIScreen object, 95
UITouch object

locationInView method, 53
multi-touch functionality and, 52–53
paddle physics and, 131
storing, 132

UIView class
Air Hockey game example, 126
collision detection, 63
math problem example, 35
Paddles game example, 48

UIViewController class, 47, 173
UIWindow object, 95
USB dock connector, 16
Use for Development button, 16
Utilities submenu (View menu)

Attributes Inspector option, 43
Object Library option, 26
Show | Hide Utilities option, 12

Utility Application template, 5
utility area (Xcode interface)

about, 12–13
depicted, 45
displaying, 12
hiding, 12

V
validating applications, 224
vector graphics format

about, 91
exporting into bitmap format, 92
scaling images and, 91–93

version considerations
filename conventions and, 96
iOS environment, 16, 41

Version Number (apps), 220
Version option (Hardware menu), 15
viewDidAppear function, 37
viewDidLoad function

about, 33, 62
Air Hockey game, 130
computer player example, 211
displaying messages, 71
loading sounds, 84
modifying, 35
Paddles game, 151–152

viewDidUnload function
Air Hockey game example, 132
math problem example, 33
Paddles game example, 49

viewDidUnload method
math problem example, 33

View menu
displaying Xcode interface areas, 7
Editor submenu, 30
Show Debug Area option, 13, 51
Utilities submenu

Attributes Inspector option, 43
Object Library option, 26
Show | Hide Utilities option, 12

View object, 45

W
.wav files, 81, 161
web reviews, 238
White Noise (app), xii, 231–233

253

index

X
Xcode

application states, 19–25
building and running applications,

14–17
code structure, 18–19
creating connections, 30–34
developer registration, 1
game logic, 34–37
installing, 2–3
Interface Builder, 26–29
launching, 4
project types, 5–7

Xcode interface
about, 7
debug area, 13, 51
editor area, 10–12
navigator area, 8–10
utility area, 12–13, 45

Chapter 2: Index254

	About the Author
	Preface
	Who Should Read This Book
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Introduction to Xcode
	Developer Registration
	Installation
	Xcode
	Interface Builder
	Connections
	Game Logic

	Hello Pong
	Project Creation
	Laying Out the Game Pieces
	Multi-touch
	Animation
	Collision
	Scoring
	Finishing Touches
	Sounds

	Graphics
	Introduction
	Bitmaps and Vectors
	Image Formats
	Retina Display
	Creating Images for an Air Hockey Game
	Application Integration
	Build and Run

	Physics
	Paddle Physics
	Puck Physics

	Sounds
	What Is Sound?
	Creating Sounds
	Downloading Sounds
	Recording Sounds
	Editing Sounds

	Computer AI
	Computer Player Menu
	Computer Player
	Computer Difficulty

	App Store
	Screenshots
	Creating the Application Description
and Keywords
	Submitting Metadata to iTunes Connect
	Archive and Submit
	App Review
	App Marketing and Sales
	Conclusion

